To a question on the supercompactness of ultrafilter spaces
Ural mathematical journal, Tome 5 (2019) no. 1, pp. 31-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The space of ultrafilters of a $\pi$-system endowed with the topology of Wallman type is considered. The question on the supercompactness of this space is investigated. For this, the enveloping space of maximal linked systems with the corresponding topology of Wallman type is used. Necessary and sufficient conditions for the coincidence of the set of all ultrafilters of the initial $\pi$-system and the set of all maximal linked systems for this $\pi$-system are obtained. Specific variants of wide sense measurable spaces with this coincidence property are given.
Keywords: maximal linked system, topology, supercompactness, ultrafilter.
@article{UMJ_2019_5_1_a3,
     author = {Alexander G. Chentsov},
     title = {To a question on the supercompactness of ultrafilter spaces},
     journal = {Ural mathematical journal},
     pages = {31--47},
     year = {2019},
     volume = {5},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a3/}
}
TY  - JOUR
AU  - Alexander G. Chentsov
TI  - To a question on the supercompactness of ultrafilter spaces
JO  - Ural mathematical journal
PY  - 2019
SP  - 31
EP  - 47
VL  - 5
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a3/
LA  - en
ID  - UMJ_2019_5_1_a3
ER  - 
%0 Journal Article
%A Alexander G. Chentsov
%T To a question on the supercompactness of ultrafilter spaces
%J Ural mathematical journal
%D 2019
%P 31-47
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a3/
%G en
%F UMJ_2019_5_1_a3
Alexander G. Chentsov. To a question on the supercompactness of ultrafilter spaces. Ural mathematical journal, Tome 5 (2019) no. 1, pp. 31-47. http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a3/

[1] Bulinskii A. V., Shiryaev A. N., Theory of Random Processes, Fizmatlit, Moscow, 2005, 402 pp. (in Russian)

[2] Chentsov A. G., “One representation of the results of action of approximate solutions in a problem with constraints of asymptotic nature”, Proc. Steklov Inst. Math., 276:1 (2012), 48–62 | DOI | MR

[3] Chentsov A. G., “On example of ultrafilter space of algebra of sets”, Tr. Inst. Mat. Mekh. UrO RAN, 17:4 (2011), 293–311 (in Russian)

[4] Arhangel'skii A. V., “Compactness”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., VINITI, 50 (1989), 5–128 (in Russian)

[5] Engelking R., General Topology, PWN, Warsaw, 1977, 751 pp. | MR | Zbl

[6] De Groot J., “Superextensions and supercompactness”, “Contributions to Extension Theory of Topological Structures and Its Applications”, 1969, 89–90, Deutscher Verlag Wiss., Berlin

[7] Van Mill J., Supercompactness and Wallman Spaces, v. 85, Math. Centre Tracts, Amsterdam, 1977, 238 pp. | MR | Zbl

[8] Strok M., Szymański A., “Compact metric spaces have binary bases”, Fund. Math., 89 (1975), 81–91 | DOI | MR | Zbl

[9] Fedorchuk V. V., Filippov V. V., General Topology. Basic Constructions, Fizmatlit, Moscow, 2006, 332 pp. (in Russian)

[10] Chentsov A. G., “Superextension as a bitopological space”, Izv. Inst. Mat. Informat. Udmurt. Univ., 49 (2017), 55–79 (in Russian) | DOI | MR | Zbl

[11] Chentsov A. G., “Ultrafilters and maximal linked systems of sets”, Vestn. Udmurt. Univ. Mat. Mekh. Komp. Nauki, 27:3 (2017), 365–388 (in Russian) | DOI | MR | Zbl

[12] Chentsov A. G., “Bitopological spaces of ultrafilters and maximal linked systems”, Tr. Inst. Mat. Mekh. UrO RAN, 24:1 (2018), 257–272 (in Russian) | DOI | MR

[13] Chentsov A. G., “Some representations connected with ultrafilters and maximal linked systems”, Ural Math. J., 3:2 (2017), 100–121 | DOI | MR

[14] Chentsov A. G., “To the question on abstract analogs of superextensions of topological spaces”, Functionally Differential Equations: Theory and Applications, 2018, 244–262 (in Russian)

[15] Chentsov A. G., “Maximal linked systems and ultrafilters of widely understood mesurable spaces”, Tambov Univ. Reports. Ser. Nat. Tech. Sci., 23:124 (2018), 846–860 (in Russian) | DOI | MR

[16] Chentsov A. G., “Ultrafilters and maximal linked systems: basic properies and topological constructions”, Izv. Inst. Mat. Informat. Udmurt. Univ., 52 (2018), 86–102 (in Russian) | DOI | MR

[17] Kuratowski K., Mostowski A., Set Theory, North Holland Publishing Company, Amsterdam, 1967, 416 pp. | MR

[18] Aleksandrov P. S., Introduction to the Theory of Sets and General Topology, Editorial URSS, Moscow, 2004, 366 pp. (in Russian) | MR

[19] Chentsov A. G., “Attraction sets in abstract attainability problems: equivalent representations and basic properties”, Russian Math. (Iz. VUZ), 57:11 (2013), 28–44 | DOI | MR | Zbl

[20] Chentsov A. G., “Ultrafilters of measurable spaces as generalized solutions in abstract attainability problem”, Proc. Steklov Inst. Math., 275:1 (2011), 12–39 | DOI | MR