@article{UMJ_2019_5_1_a3,
author = {Alexander G. Chentsov},
title = {To a question on the supercompactness of ultrafilter spaces},
journal = {Ural mathematical journal},
pages = {31--47},
year = {2019},
volume = {5},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a3/}
}
Alexander G. Chentsov. To a question on the supercompactness of ultrafilter spaces. Ural mathematical journal, Tome 5 (2019) no. 1, pp. 31-47. http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a3/
[1] Bulinskii A. V., Shiryaev A. N., Theory of Random Processes, Fizmatlit, Moscow, 2005, 402 pp. (in Russian)
[2] Chentsov A. G., “One representation of the results of action of approximate solutions in a problem with constraints of asymptotic nature”, Proc. Steklov Inst. Math., 276:1 (2012), 48–62 | DOI | MR
[3] Chentsov A. G., “On example of ultrafilter space of algebra of sets”, Tr. Inst. Mat. Mekh. UrO RAN, 17:4 (2011), 293–311 (in Russian)
[4] Arhangel'skii A. V., “Compactness”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., VINITI, 50 (1989), 5–128 (in Russian)
[5] Engelking R., General Topology, PWN, Warsaw, 1977, 751 pp. | MR | Zbl
[6] De Groot J., “Superextensions and supercompactness”, “Contributions to Extension Theory of Topological Structures and Its Applications”, 1969, 89–90, Deutscher Verlag Wiss., Berlin
[7] Van Mill J., Supercompactness and Wallman Spaces, v. 85, Math. Centre Tracts, Amsterdam, 1977, 238 pp. | MR | Zbl
[8] Strok M., Szymański A., “Compact metric spaces have binary bases”, Fund. Math., 89 (1975), 81–91 | DOI | MR | Zbl
[9] Fedorchuk V. V., Filippov V. V., General Topology. Basic Constructions, Fizmatlit, Moscow, 2006, 332 pp. (in Russian)
[10] Chentsov A. G., “Superextension as a bitopological space”, Izv. Inst. Mat. Informat. Udmurt. Univ., 49 (2017), 55–79 (in Russian) | DOI | MR | Zbl
[11] Chentsov A. G., “Ultrafilters and maximal linked systems of sets”, Vestn. Udmurt. Univ. Mat. Mekh. Komp. Nauki, 27:3 (2017), 365–388 (in Russian) | DOI | MR | Zbl
[12] Chentsov A. G., “Bitopological spaces of ultrafilters and maximal linked systems”, Tr. Inst. Mat. Mekh. UrO RAN, 24:1 (2018), 257–272 (in Russian) | DOI | MR
[13] Chentsov A. G., “Some representations connected with ultrafilters and maximal linked systems”, Ural Math. J., 3:2 (2017), 100–121 | DOI | MR
[14] Chentsov A. G., “To the question on abstract analogs of superextensions of topological spaces”, Functionally Differential Equations: Theory and Applications, 2018, 244–262 (in Russian)
[15] Chentsov A. G., “Maximal linked systems and ultrafilters of widely understood mesurable spaces”, Tambov Univ. Reports. Ser. Nat. Tech. Sci., 23:124 (2018), 846–860 (in Russian) | DOI | MR
[16] Chentsov A. G., “Ultrafilters and maximal linked systems: basic properies and topological constructions”, Izv. Inst. Mat. Informat. Udmurt. Univ., 52 (2018), 86–102 (in Russian) | DOI | MR
[17] Kuratowski K., Mostowski A., Set Theory, North Holland Publishing Company, Amsterdam, 1967, 416 pp. | MR
[18] Aleksandrov P. S., Introduction to the Theory of Sets and General Topology, Editorial URSS, Moscow, 2004, 366 pp. (in Russian) | MR
[19] Chentsov A. G., “Attraction sets in abstract attainability problems: equivalent representations and basic properties”, Russian Math. (Iz. VUZ), 57:11 (2013), 28–44 | DOI | MR | Zbl
[20] Chentsov A. G., “Ultrafilters of measurable spaces as generalized solutions in abstract attainability problem”, Proc. Steklov Inst. Math., 275:1 (2011), 12–39 | DOI | MR