@article{UMJ_2019_5_1_a10,
author = {German L. Zavorokhin},
title = {A mathematical model of an arterial bifurcation},
journal = {Ural mathematical journal},
pages = {109--126},
year = {2019},
volume = {5},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a10/}
}
German L. Zavorokhin. A mathematical model of an arterial bifurcation. Ural mathematical journal, Tome 5 (2019) no. 1, pp. 109-126. http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a10/
[1] Amick C. J., “Steady solutions of the Navier–Stokes equations in unbounded channels and pipes”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 4:3 (1977), 473–513 http://www.numdam.org/item/?id=ASNSP_1977_4_4_3_473_0 | MR | Zbl
[2] Amick C. J., “Properties of steady Navier–Stokes solutions for certain unbounded channels and pipes”, Nonlinear Anal. Theory, Meth., Appl., 2:6 (1978), 689–720 | DOI | MR | Zbl
[3] Berntsson F., Karlsson M., Kozlov V. A., Nazarov S. A., “A Modification to the Kirchhoff Conditions at a Bifurcation and Loss Coefficients”, LiU electronic press, 2018, 1–10 https://www.diva-portal.org/smash/get/diva2:1204214/FULLTEXT01.pdf
[4] Bogovskii M. E., “On solution of certain problems of vector analysis associated with operators $\rm div$ and $\rm grad$”, Tr. Semin. im. S.L. Soboleva, 1 (1980), 5–40 | MR
[5] Fung Y. C., Biomechanics. Circulation, 2-nd ed., Springer-Verlag, New York, 2011, 572 pp. | DOI
[6] Il'in A. M., Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, Am. Math. Soc., 1992, 281 pp. | MR | Zbl
[7] Kassab G. S. and Fung Y.-C. B., “The pattern of coronary arteriolar bifurcation and the uniform shear hypothesis”, Ann. Biomed. Eng., 23:1 (1995), 13–20 | DOI
[8] Kassab G. S., Rider C. A., Tang N. J., Fung Y. C., “Morphometry of pig coronary arterial trees”, Am. J. Physiol. Heart Circ. Physiol., 265:1 (1993), H350–H365 | DOI
[9] Kozlov V. A., Nazarov S. A., “Transmission conditions in a one-dimensional model of bifurcating arteries with elastic walls”, J. Math. Sci. (N.Y.), 224:1 (2017), 94–118 | DOI | MR | Zbl
[10] Kozlov V. A., Nazarov S. A., “A one-dimensional model of flow in a junction of thin channels, including arterial trees”, Sb. Math., 208:8 (2017), 1138–1186 | DOI | MR | Zbl
[11] Kozlov V. A., Nazarov S. A., Zavorokhin G. L., “A fractal graph model of capillary type systems”, Complex Var. Elliptic Equ., 63:7–8 (2018), 1044–1068 | DOI | MR | Zbl
[12] Kozlov V. A., Nazarov S. A., Zavorokhin G. L., “Pressure drop matrix of a bifurcation of an artery with defects”, Eurasian J. Math. Comput. Appl., 7:3 (2019) (Accepted) | Zbl
[13] Kufner A., Weighted Sobolev Spaces, Teubner, 1980, 152 pp. | MR | Zbl
[14] Ladyzhenskaya O. A., Solonnikov V. A., “Determination of the solutions of boundary value problems for stationary Stokes and Navier-Stokes equations having an unbounded Dirichlet integral”, J. Sov. Math., 21:5 (1983), 728–761 | DOI | Zbl
[15] Maz'ya V. G., Nazarov S. A., Plamenevskij B. A., Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains. Vol. II, Ser. Oper. Theory Adv. Appl., Vol. 112, Birkhäuser, Verlag, Basel, 2000 | DOI | MR | Zbl
[16] Murray C. D., “The physiological principle of minimum work. I. The vascular system and the cost of blood volume”, Proc. Natl. Acad. Sci. USA, 12:3 (1926), 207–214 | DOI
[17] Mynard J. P. and Smolich J. J., “One-dimensional haemodynamic modeling and wave dynamics in the entire adult circulation”, Ann. Biomed. Eng., 43:6 (2015), 1443–1460 | DOI
[18] Nazarov S. A., Pileckas K., “Asymptotic conditions at infinity for the Stokes and Navier-Stokes problems in domains with cylindrical outlets to infinity”, Advances in Fluid Dynamics, Quaderni di Matematica, 4 (1999), 141–243 | MR | Zbl
[19] Pólya G., Szegö G., Isoperimetric Inequalities in Mathematical Physics, Ser. Ann. of Math. Stud., vol. 27, Princeton University Press, Princeton, USA, 1951, 279 pp. https://www.jstor.org/stable/j.ctt1b9rzzn | MR
[20] Simakov S. S., “Modern methods of mathematical modeling of blood flow using reduced order methods”, Comput. Res. Model., 10:5 (2018), 581—604 (in Russian) | DOI | MR
[21] Solonnikov V. A., “On the solvability of boundary and initial-boundary value problems for the Navier–Stokes system in domains with noncompact boundaries”, Pacific J. Math., 93:2 (1981), 443–458 https://projecteuclid.org/euclid.pjm/1102736272 | MR | Zbl
[22] Van Dyke M., Perturbation Methods in Fluid Mechanics, Academic Press, New York, London, 1964, 229 pp. | MR | Zbl