A mathematical model of an arterial bifurcation
Ural mathematical journal, Tome 5 (2019) no. 1, pp. 109-126

Voir la notice de l'article provenant de la source Math-Net.Ru

An asymptotic model of an arterial bifurcation is presented. We propose a simple approximate method of calculation of the pressure drop matrix. The entries of this matrix are included in the modified transmission conditions, which were introduced earlier by Kozlov and Nazarov, and which give better approximation of 3D flow by 1D flow near a bifurcation of an artery as compared to the classical Kirchhoff conditions. The present modeling takes into account the heuristic Murrey cubic law.
Keywords: Stokes’ flow, bifurcation of a blood vessel, modified Kirchhoff conditions, pressure drop matrix, Murrey’s law.
@article{UMJ_2019_5_1_a10,
     author = {German L. Zavorokhin},
     title = {A mathematical model of an arterial bifurcation},
     journal = {Ural mathematical journal},
     pages = {109--126},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a10/}
}
TY  - JOUR
AU  - German L. Zavorokhin
TI  - A mathematical model of an arterial bifurcation
JO  - Ural mathematical journal
PY  - 2019
SP  - 109
EP  - 126
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a10/
LA  - en
ID  - UMJ_2019_5_1_a10
ER  - 
%0 Journal Article
%A German L. Zavorokhin
%T A mathematical model of an arterial bifurcation
%J Ural mathematical journal
%D 2019
%P 109-126
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a10/
%G en
%F UMJ_2019_5_1_a10
German L. Zavorokhin. A mathematical model of an arterial bifurcation. Ural mathematical journal, Tome 5 (2019) no. 1, pp. 109-126. http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a10/