On the Сhernous’ko time-optimal problem for the equation of heat conductivity in a rod
Ural mathematical journal, Tome 5 (2019) no. 1, pp. 13-23 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The time-optimal problem for the controllable equation of heat conductivity in a rod is considered. By means of the Fourier expansion, the problem reduced to a countable system of one-dimensional control systems with a combined constraint joining control parameters in one relation. In order to improve the time of a suboptimal control constructed by F.L. Chernous’ko, a method of grouping coupled terms of the Fourier expansion of a control function is applied, and a synthesis of the improved suboptimal control is obtained in an explicit form.
Keywords: heat equation, time-optimal problem, Pontryagin maximum principle, suboptimal control, synthesis of control.
@article{UMJ_2019_5_1_a1,
     author = {Abdulla A. Azamov and Jasurbek A. Bakhramov and Odiljon S. Akhmedov},
     title = {On the {{\CYRS}hernous{\textquoteright}ko} time-optimal problem for the equation of heat conductivity in a rod},
     journal = {Ural mathematical journal},
     pages = {13--23},
     year = {2019},
     volume = {5},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a1/}
}
TY  - JOUR
AU  - Abdulla A. Azamov
AU  - Jasurbek A. Bakhramov
AU  - Odiljon S. Akhmedov
TI  - On the Сhernous’ko time-optimal problem for the equation of heat conductivity in a rod
JO  - Ural mathematical journal
PY  - 2019
SP  - 13
EP  - 23
VL  - 5
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a1/
LA  - en
ID  - UMJ_2019_5_1_a1
ER  - 
%0 Journal Article
%A Abdulla A. Azamov
%A Jasurbek A. Bakhramov
%A Odiljon S. Akhmedov
%T On the Сhernous’ko time-optimal problem for the equation of heat conductivity in a rod
%J Ural mathematical journal
%D 2019
%P 13-23
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a1/
%G en
%F UMJ_2019_5_1_a1
Abdulla A. Azamov; Jasurbek A. Bakhramov; Odiljon S. Akhmedov. On the Сhernous’ko time-optimal problem for the equation of heat conductivity in a rod. Ural mathematical journal, Tome 5 (2019) no. 1, pp. 13-23. http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a1/

[1] Ahmed N. U., “Optimal control of infinite dimensional systems governed by integro differential equations”, Differential Equations: Dynamical Systems, and Control Science, 152 (1994), 383–402 | MR | Zbl

[2] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimal Control, Nauka, Moscow, 2005, 384 pp. (in Russian) | MR

[3] Arutyunov A. V., Karamzin D. Y., Pereira F. M., “The maximum principle for optimal control problems with state constraints by R.V. Gamkrelidze: Revisited”, J. Optim. Theory Appl., 149:3 (2011), 474–493 | DOI | MR | Zbl

[4] Arutyunov A. V., Vinter R. B., “A simple ‘Finite Approximations’ proof of the Pontryagin maximum principle under reduced differentiability hypotheses”, Set-Valued Anal., 12:1–2 (2004), 5–24 | DOI | MR | Zbl

[5] Azamov A. A., Ruzibayev M. R., “The time-optimal problem for evolutionary partial differential equations”, J. Appl. Math. Mech., 77:2 (2013), 220–224 | DOI | MR | Zbl

[6] Barbu V., Analysis and Control of Nonlinear Infinite Dimensional Systems, Academic Press, Boston, 1993, 475 pp. | MR | Zbl

[7] Blagodatskikh V. I., Introduction to Optimal Control (Linear Theory), Vysshaya Shkola, Moscow, 2001, 239 pp. (in Russian)

[8] Bongini F., Fornasier M., Rossi F., Solombrino F., “Mean-field Pontryagin maximum principle”, J. Optim. Theory Appl., 175:1 (2017), 1–38 | DOI | MR | Zbl

[9] Bonnet B., Rossi F., A Pontryagin Maximum Principle in Wasserstein Spaces for Constrained Optimal Control Problems, 2018, arXiv: 1810.13117v2 [math.OC] | MR

[10] Bryson A. E., “Optimal Control — 1950 to 1985”, IEEE Control Systems, 16:3 (1996), 26–33 | DOI

[11] Butkovskiy A. G., Control Methods of the Systems with Distributed Parameters, Nauka, Moscow, 1965, 474 pp. (in Russian) | MR

[12] Carthel C., Glowinski R., Lions J. L., “On exact and approximate boundary controllability for the heat equation: A numerical approach”, J. Optim. Theory Appl., 82:3 (1994), 429–484 | DOI | MR | Zbl

[13] Chernous'ko F. L., “Bounded controls in distributed-parameter systems”, J. Appl. Math. Mech., 56:5 (1992), 707–723 | DOI | MR | Zbl

[14] Evans L. C., Partial Differential Equations, Amer. Math. Soc., Rhode Island, 2010, 749 pp. | Zbl

[15] Gong W., Hinze M., Zhou Z., “A priori error analysis for finite element approximation of parabolic optimal control problems with pointwise control”, SIAM J. Control Optim., 52:1 (2014), 97–119 | DOI | MR | Zbl

[16] Ibragimov G., Risman M. H., Azamov A. A., “Existence and uniqueness of the solution for an infinite system of differential equations”, J. Karya Asli Lorekan Ahli Matematik, 1:2 (2008), 9–14 | MR

[17] Ibragimov G. I., “Optimal pursuit time for a differential game in the Hilbert space $l_2$”, Science Asia, 39S:1 (2013), 25–30 | DOI | MR

[18] Ji G., Martin C., “Optimal boundary control of the heat equation with target function at terminal time”, Appl. Math. Comput., 127:2–3 (2002), 335–345 | DOI | MR | Zbl

[19] Krasovskii N. N., Theory of Control of Motion, Nauka, Moscow, 1968, 476 pp. (in Russian) | MR

[20] Kubyshkin V. A., Postnov S. S., “Time-optimal boundary control for systems defined by a fractional order diffusion equation”, Autom. Remote Control, 79:5 (2018), 884–896 | DOI | MR | Zbl

[21] Ladyzhenskaya O. A., The boundary value problems of mathematical physics, Springer-Verlag, New York, 1985, 322 pp. | DOI | MR | Zbl

[22] Laykekhman D., Vexler B., “Optimal a priori error estimates of parabolic optimal control problems with pointwise control”, SIAM J. Numer. Anal., 51:5 (2013), 2797–2821 | DOI | MR

[23] Lee E. B., Markus L., Foundation of Optimal Control Theory, Krieger Pub Co, Malabar (FL), 1986, 586 pp. | MR

[24] Lee M. J., Park J. Y., “Pontryagin's maximum principle for optimal control of a non-well-posed parabolic differential equation involving a state constraint”, ANZIAM J., 46:2 (2004), 171–184 | DOI | MR | Zbl

[25] Lions J. L., Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, Heidelberg, 1971, 440 pp. | MR | Zbl

[26] Lü Q., Wang G., “On the existence of time optimal controls with constraints of the rectangular type for heat equations”, SIAM J. Control Optim., 49:3 (2011), 1124–1149 | DOI | MR | Zbl

[27] Magaril-Ilyaev G. G., Tikhomirov V. M., Convex Analysis: Theory and Applications, Amer. Math. Soc., USA, 2003, 183 pp. | MR | Zbl

[28] Mizohata S., The Theory of Partial Differential Equations, University Press, Cambridge, 1979, 490 pp. | DOI | MR

[29] Pan L. P., Yong J., “Optimal control for quasilinear retarded parabolic systems”, ANZIAM J., 42:4 (2001), 532–551 | DOI | MR | Zbl

[30] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mishchenko E. F., The Mathematical Theory of Optimal Processes, John Wiley Sons, NY, London, 1962, 320 pp. | DOI | MR | Zbl

[31] Raymond J. P., Zidani H., “Pontryagin's Principle for state-constrained control problems governed by parabolic equations with unbounded controls”, SIAM J. Control Optim., 36:6 (1998), 1853–1879 | DOI | MR | Zbl

[32] Raymond J. P., Zidani H., “Pontryagin's principle for time-optimal problems”, J. Optim. Theory Appl., 101:2 (1999), 375–402 | DOI | MR | Zbl

[33] Ross I. M., A Primer on Pontryagin's Principle in Optimal Control, Collegiate Publishers, 2009, 109 pp. | MR

[34] Serag H. M., “Distributed control for cooperative systems involving parabolic operators with an infinite number of variables”, Pure Math. Appl., 15:4 (2004), 439–451 | MR | Zbl

[35] Tsachev T., “An optimal control problem for the heat equation”, Mathematica Balkanica, 3 (1984), 296–310 http://www.math.bas.bg/infres/MathBalk/MB-03/MB-03-296-310.pdf | MR

[36] Zhang Y., “On a kind of time optimal control problem of the heat equation”, Adv. Difference Equ., 2018:117 (2018), 1–10 | DOI | MR