On the Сhernous’ko time-optimal problem for the equation of heat conductivity in a rod
Ural mathematical journal, Tome 5 (2019) no. 1, pp. 13-23
Voir la notice de l'article provenant de la source Math-Net.Ru
The time-optimal problem for the controllable equation of heat conductivity in a rod is considered. By means of the Fourier expansion, the problem reduced to a countable system of one-dimensional control systems with a combined constraint joining control parameters in one relation. In order to improve the time of a suboptimal control constructed by F.L. Chernous’ko, a method of grouping coupled terms of the Fourier expansion of a control function is applied, and a synthesis of the improved suboptimal control is obtained in an explicit form.
Keywords:
heat equation, time-optimal problem, Pontryagin maximum principle, suboptimal control, synthesis of control.
@article{UMJ_2019_5_1_a1,
author = {Abdulla A. Azamov and Jasurbek A. Bakhramov and Odiljon S. Akhmedov},
title = {On the {{\CYRS}hernous{\textquoteright}ko} time-optimal problem for the equation of heat conductivity in a rod},
journal = {Ural mathematical journal},
pages = {13--23},
publisher = {mathdoc},
volume = {5},
number = {1},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a1/}
}
TY - JOUR AU - Abdulla A. Azamov AU - Jasurbek A. Bakhramov AU - Odiljon S. Akhmedov TI - On the Сhernous’ko time-optimal problem for the equation of heat conductivity in a rod JO - Ural mathematical journal PY - 2019 SP - 13 EP - 23 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a1/ LA - en ID - UMJ_2019_5_1_a1 ER -
%0 Journal Article %A Abdulla A. Azamov %A Jasurbek A. Bakhramov %A Odiljon S. Akhmedov %T On the Сhernous’ko time-optimal problem for the equation of heat conductivity in a rod %J Ural mathematical journal %D 2019 %P 13-23 %V 5 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a1/ %G en %F UMJ_2019_5_1_a1
Abdulla A. Azamov; Jasurbek A. Bakhramov; Odiljon S. Akhmedov. On the Сhernous’ko time-optimal problem for the equation of heat conductivity in a rod. Ural mathematical journal, Tome 5 (2019) no. 1, pp. 13-23. http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a1/