Approximating solutions of nonlinear hybrid Caputo fractional integro-differential equations via Dhage iteration principle
Ural mathematical journal, Tome 5 (2019) no. 1, pp. 3-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article, we prove the existence and approximation of solutions of the initial value problems of nonlinear hybrid Caputo fractional integro-differential equations. The main tool employed here is the Dhage iteration principle in a partially ordered normed linear space. An example is also given to illustrate the main results.
Keywords: approximating solutions, initial value problems, Dhage iteration principle, hybrid fixed point theorem.
@article{UMJ_2019_5_1_a0,
     author = {Abdelouaheb Ardjouni and Ahcene Djoudi},
     title = {Approximating solutions of nonlinear hybrid {Caputo} fractional integro-differential equations via {Dhage} iteration principle},
     journal = {Ural mathematical journal},
     pages = {3--12},
     year = {2019},
     volume = {5},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a0/}
}
TY  - JOUR
AU  - Abdelouaheb Ardjouni
AU  - Ahcene Djoudi
TI  - Approximating solutions of nonlinear hybrid Caputo fractional integro-differential equations via Dhage iteration principle
JO  - Ural mathematical journal
PY  - 2019
SP  - 3
EP  - 12
VL  - 5
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a0/
LA  - en
ID  - UMJ_2019_5_1_a0
ER  - 
%0 Journal Article
%A Abdelouaheb Ardjouni
%A Ahcene Djoudi
%T Approximating solutions of nonlinear hybrid Caputo fractional integro-differential equations via Dhage iteration principle
%J Ural mathematical journal
%D 2019
%P 3-12
%V 5
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a0/
%G en
%F UMJ_2019_5_1_a0
Abdelouaheb Ardjouni; Ahcene Djoudi. Approximating solutions of nonlinear hybrid Caputo fractional integro-differential equations via Dhage iteration principle. Ural mathematical journal, Tome 5 (2019) no. 1, pp. 3-12. http://geodesic.mathdoc.fr/item/UMJ_2019_5_1_a0/

[1] Ahmad B., Ntouyas S. K., “Nonlocal boundary value problems for hybrid fractional differential equations and inclusions of Hadamard type”, Fractional Differ. Calc., 5:2 (2015), 107–123 | DOI | MR | Zbl

[2] Ahmad B., Ntouyas S. K., “Initial-value problems for hybrid Hadamard fractional differential equations”, Electron. J. Differential Equations, 2014:161 (2014), 1–8 https://ejde.math.txstate.edu/Volumes/2014/161/ahmad.pdf | MR

[3] Boulares H., Ardjouni A., Laskri Y., “Positive solutions for nonlinear fractional differential equations”, Positivity, 21:3 (2017), 1201–1212 | DOI | MR | Zbl

[4] Boulares H., Ardjouni A., Laskri Y., “Stability in delay nonlinear fractional differential equations”, Rend. Circ. Mat. Palermo (2), 65:2 (2016), 243–253 | DOI | MR | Zbl

[5] Dhage B. C., “Hybrid fixed point theory in partially ordered normed linear spaces and applications to fractional integral equations”, Differ. Equ. Appl., 5:2 (2013), 155–184 | DOI | MR | Zbl

[6] Dhage B. C., “Partially condensing mappings in ordered normed linear spaces and applications to functional integral equations”, Tamkang J. Math., 45:4 (2014), 397–426 | DOI | MR | Zbl

[7] Dhage B. C., Dhage S. B., Ntouyas S. K., “Approximating solutions of nonlinear hybrid differential equations”, Appl. Math. Lett., 34 (2014), 76–80 | DOI | MR | Zbl

[8] Dhage B. C., Dhage S. B., Ntouyas S. K., “Approximating solutions of nonlinear second order ordinary differential equations via Dhage iteration principle”, Malaya J. Mat., 4:1 (2016), 8–18 https://pdfs.semanticscholar.org/3c06/d4be8f47b80dbf3f9a877808e2241e51bcef.pdf

[9] Dhage B. C., Khurpe G. T., Shete A. Y., Salunke J. N., “Existence and approximate solutions for nonlinear hybrid fractional integro-differential equations”, Int. J. Anal. Appl., 11:2 (2016), 157–167 http://etamaths.com/index.php/ijaa/article/view/716 | MR | Zbl

[10] Dhage B. C., Lakshmikantham V., “Basic results on hybrid differential equations”, Nonlinear Anal. Hybrid Syst., 4:3 (2010), 414–424 | DOI | MR | Zbl

[11] Ge F., Kou C., “Stability analysis by Krasnoselskii's fixed point theorem for nonlinear fractional differential equations”, Appl. Math. Comput., 257 (2015), 308–316 | DOI | MR | Zbl

[12] Ge F., Kou C., “Asymptotic stability of solutions of nonlinear fractional differential equations of order $1\alpha2$”, J. Shanghai Normal Univ. Nat. Sci., 44:3 (2015), 284–290

[13] Gomoyunov M. I., “Fractional derivatives of convex Lyapunov functions and control problems in fractional order systems”, Fract. Calc. Appl. Anal., 21:5 (2018), 1238–1261 | DOI | MR

[14] Heikkilä S., Lakshmikantham V., Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations, Marcel Dekker inc., New York, 1994, 536 pp. | DOI | MR | Zbl

[15] Kilbas A. A., Srivastava H. H., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier Science, Amsterdam, 2006, 540 pp. | MR | Zbl

[16] Kou C., Zhou H., Yan Y., “Existence of solutions of initial value problems for nonlinear fractional differential equations on the half-axis”, Nonlinear Anal., 74:17 (2011), 5975–5986 | DOI | MR | Zbl

[17] Lakshmikantham V., Vatsala A. S., “Basic theory of fractional differential equations”, Nonlinear Anal., 69:8 (2008), 2677–2682 | DOI | MR | Zbl

[18] Li N., Wang C., “New existence results of positive solution for a class of nonlinear fractional differential equations”, Acta Math. Sci., 33:3 (2013), 847–854 | DOI | MR | Zbl

[19] Podlubny I., Fractional Differential Equations, Academic Press, San Diego, 1999, 340 pp. | MR | Zbl

[20] Zhao Y., Sun S., Han Z., Li Q., “Theory of fractional hybrid differential equations”, Comput. Math. Appl., 62:3 (2011), 1312–1324 | DOI | MR | Zbl