@article{UMJ_2018_4_2_a9,
author = {Muhammad Jibril Shahab Sahir},
title = {Formation of versions of some dynamic inequalities unified on time scale calculus},
journal = {Ural mathematical journal},
pages = {88--98},
year = {2018},
volume = {4},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a9/}
}
Muhammad Jibril Shahab Sahir. Formation of versions of some dynamic inequalities unified on time scale calculus. Ural mathematical journal, Tome 4 (2018) no. 2, pp. 88-98. http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a9/
[1] Agarwal R.P., O'Regan D., Saker S.H., Dynamic Inequalities on Time Scales, Springer International Publishing, Cham, Switzerland, 2014 | DOI | MR | Zbl
[2] Anastassiou G.A., “Integral operator inequalities on time scales”, Intern. J. Difference Equ., 7:2 (2012), 111–137 | MR
[3] Anderson D., Bullock J., Erbe L., Peterson A., Tran H., “Nabla dynamic equations on time scales”, Pan-American Math. J., 13:1 (2003), 1–48 | MR
[4] Beckenbach E.F., Bellman R., Inequalities, Springer, Berlin, Göttingen and Heidelberg, 1961, 258 pp. | DOI | MR | Zbl
[5] Bellman R., “Notes on matrix theory-IV (An inequality due to Bergström)”, Amer. Math. Monthly, 62 (1955), 172—173 | DOI | MR | Zbl
[6] Bergström H., “A triangle inequality for matrices”, Den Elfte Skandinaviske Matematikerkongress, 1949, 264–267 | MR
[7] Bohner M., Peterson A., Dynamic Equations on Time Scales, Birkhäuser Boston, Inc., Boston, 2001 | DOI | MR | Zbl
[8] Bohner M., Peterson A., Advances in Dynamic Equations on Time Scales, Birkhäuser Boston, MA, Boston, 2003 | DOI | MR | Zbl
[9] Dinu C., “Convex functions on time scales”, Annals Univ. of Craiova, Math. Comp. Sci. Ser., 35 (2008), 87—96 | MR | Zbl
[10] Bătineţu-Giurgiu D.M., Mărghidanu D., Pop O.T., “A new generalization of Radon's Inequality and applications”, Creative Math $\$ Inf, 20:2 (2011), 111–116 | MR
[11] Hilger S., Ein Ma$\beta$kettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, PhD thesis, Universität Würzburg, 1988
[12] Hong C.H., Yeh C.C., “Rogers-Hölder's Inequality on time scales”, Intern. J. Pure Appl. Math., 29:3 (2006), 289–309 | DOI | MR | Zbl
[13] Mitrinović D.S., Analytic Inequalities, Springer-Verlag, Berlin, 1970 | DOI | MR | Zbl
[14] Nesbitt A.M., “Problem 15114”, Educational Times, 3 (1903), 37–38 | Zbl
[15] Radon J., “Theorie und Anwendungen der absolut additiven Mengenfunktionen”, Sitzungsber. Acad. Wissen. Wien, 122 (1913), 1295–1438 | Zbl
[16] Sahir M.J.S., “Dynamic inequalities for convex functions harmonized on time scales”, J. Appl. Math. Phys., 5 (2017), 2360–2370 | DOI | MR
[17] Sahir M.J.S., “Fractional dynamic inequalities harmonized on time scales”, Cogent Math. Stat., 5 (2018), 1–7 | DOI | MR
[18] Sahir M.J.S., “Hybridization of classical inequalities with equivalent dynamic inequalities on time scale calculus”, The Teaching of Mathematics, 21:1 (2018), 38–52 | DOI | MR
[19] Sheng Q., Fadag M., Henderson J., Davis J.M., “An exploration of combined dynamic derivatives on time scales and their applications”, Nonlinear Anal. Real World Appl., 7:3 (2006), 395–413 | DOI | MR | Zbl
[20] Tian J.F. Ha M.H., “Extensions of Hölder-type inequalities on time scales and their applications”, J. Nonlinear Sci. Appl., 10:3 (2017), 937–953 | DOI | MR