Formation of versions of some dynamic inequalities unified on time scale calculus
Ural mathematical journal, Tome 4 (2018) no. 2, pp. 88-98 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The aim of this paper is to present some comprehensive and extended versions of classical inequalities such as Radon’s Inequality, Bergstrom’s Inequality, the weighted power mean inequality, Schlomilch’s Inequality and Nesbitt’s Inequality on time scale calculus. In time scale calculus, results are unified and extended. The theory of time scale calculus is applied to unify discrete and continuous analysis and to combine them in one comprehensive form. This hybrid theory is also widely applied on dynamic inequalities. The study of dynamic inequalities has received a lot of attention in the literature and has become a major field in pure and applied mathematics.
Keywords: Radon’s Inequality, Bergstrom’s Inequality, the weighted power mean inequality, Schlomilch’s Inequality, Nesbitt’s Inequality.
@article{UMJ_2018_4_2_a9,
     author = {Muhammad Jibril Shahab Sahir},
     title = {Formation of versions of some dynamic inequalities unified on time scale calculus},
     journal = {Ural mathematical journal},
     pages = {88--98},
     year = {2018},
     volume = {4},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a9/}
}
TY  - JOUR
AU  - Muhammad Jibril Shahab Sahir
TI  - Formation of versions of some dynamic inequalities unified on time scale calculus
JO  - Ural mathematical journal
PY  - 2018
SP  - 88
EP  - 98
VL  - 4
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a9/
LA  - en
ID  - UMJ_2018_4_2_a9
ER  - 
%0 Journal Article
%A Muhammad Jibril Shahab Sahir
%T Formation of versions of some dynamic inequalities unified on time scale calculus
%J Ural mathematical journal
%D 2018
%P 88-98
%V 4
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a9/
%G en
%F UMJ_2018_4_2_a9
Muhammad Jibril Shahab Sahir. Formation of versions of some dynamic inequalities unified on time scale calculus. Ural mathematical journal, Tome 4 (2018) no. 2, pp. 88-98. http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a9/

[1] Agarwal R.P., O'Regan D., Saker S.H., Dynamic Inequalities on Time Scales, Springer International Publishing, Cham, Switzerland, 2014 | DOI | MR | Zbl

[2] Anastassiou G.A., “Integral operator inequalities on time scales”, Intern. J. Difference Equ., 7:2 (2012), 111–137 | MR

[3] Anderson D., Bullock J., Erbe L., Peterson A., Tran H., “Nabla dynamic equations on time scales”, Pan-American Math. J., 13:1 (2003), 1–48 | MR

[4] Beckenbach E.F., Bellman R., Inequalities, Springer, Berlin, Göttingen and Heidelberg, 1961, 258 pp. | DOI | MR | Zbl

[5] Bellman R., “Notes on matrix theory-IV (An inequality due to Bergström)”, Amer. Math. Monthly, 62 (1955), 172—173 | DOI | MR | Zbl

[6] Bergström H., “A triangle inequality for matrices”, Den Elfte Skandinaviske Matematikerkongress, 1949, 264–267 | MR

[7] Bohner M., Peterson A., Dynamic Equations on Time Scales, Birkhäuser Boston, Inc., Boston, 2001 | DOI | MR | Zbl

[8] Bohner M., Peterson A., Advances in Dynamic Equations on Time Scales, Birkhäuser Boston, MA, Boston, 2003 | DOI | MR | Zbl

[9] Dinu C., “Convex functions on time scales”, Annals Univ. of Craiova, Math. Comp. Sci. Ser., 35 (2008), 87—96 | MR | Zbl

[10] Bătineţu-Giurgiu D.M., Mărghidanu D., Pop O.T., “A new generalization of Radon's Inequality and applications”, Creative Math $\$ Inf, 20:2 (2011), 111–116 | MR

[11] Hilger S., Ein Ma$\beta$kettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, PhD thesis, Universität Würzburg, 1988

[12] Hong C.H., Yeh C.C., “Rogers-Hölder's Inequality on time scales”, Intern. J. Pure Appl. Math., 29:3 (2006), 289–309 | DOI | MR | Zbl

[13] Mitrinović D.S., Analytic Inequalities, Springer-Verlag, Berlin, 1970 | DOI | MR | Zbl

[14] Nesbitt A.M., “Problem 15114”, Educational Times, 3 (1903), 37–38 | Zbl

[15] Radon J., “Theorie und Anwendungen der absolut additiven Mengenfunktionen”, Sitzungsber. Acad. Wissen. Wien, 122 (1913), 1295–1438 | Zbl

[16] Sahir M.J.S., “Dynamic inequalities for convex functions harmonized on time scales”, J. Appl. Math. Phys., 5 (2017), 2360–2370 | DOI | MR

[17] Sahir M.J.S., “Fractional dynamic inequalities harmonized on time scales”, Cogent Math. Stat., 5 (2018), 1–7 | DOI | MR

[18] Sahir M.J.S., “Hybridization of classical inequalities with equivalent dynamic inequalities on time scale calculus”, The Teaching of Mathematics, 21:1 (2018), 38–52 | DOI | MR

[19] Sheng Q., Fadag M., Henderson J., Davis J.M., “An exploration of combined dynamic derivatives on time scales and their applications”, Nonlinear Anal. Real World Appl., 7:3 (2006), 395–413 | DOI | MR | Zbl

[20] Tian J.F. Ha M.H., “Extensions of Hölder-type inequalities on time scales and their applications”, J. Nonlinear Sci. Appl., 10:3 (2017), 937–953 | DOI | MR