Altruistic and aggressive types of behavior in a non-antagonistic differential game
Ural mathematical journal, Tome 4 (2018) no. 2, pp. 79-87 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An example of a non-antagonistic positional (feedback) differential two-person game (NPDG) is considered in which each of two players, in addition to the normal type of behavior, oriented toward maximizing own functional, can use other types of behavior. In particular, it can be altruistic and aggressive types. In the course of the game players can switch their behavior from one type to other. The use by players of types of behavior other than normal can lead to outcomes more preferable for them than in a game with only normal behavior. The example with the dynamics of simple motion on a plane and phase constraints illustrates the procedure of constructing new solutions.
Keywords: Non-antagonistic positional differential game, Altruistic type of behavior, Agressive type of behavior.
@article{UMJ_2018_4_2_a8,
     author = {Anatolii F. Kleimenov},
     title = {Altruistic and aggressive types of behavior in a non-antagonistic differential game},
     journal = {Ural mathematical journal},
     pages = {79--87},
     year = {2018},
     volume = {4},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a8/}
}
TY  - JOUR
AU  - Anatolii F. Kleimenov
TI  - Altruistic and aggressive types of behavior in a non-antagonistic differential game
JO  - Ural mathematical journal
PY  - 2018
SP  - 79
EP  - 87
VL  - 4
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a8/
LA  - en
ID  - UMJ_2018_4_2_a8
ER  - 
%0 Journal Article
%A Anatolii F. Kleimenov
%T Altruistic and aggressive types of behavior in a non-antagonistic differential game
%J Ural mathematical journal
%D 2018
%P 79-87
%V 4
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a8/
%G en
%F UMJ_2018_4_2_a8
Anatolii F. Kleimenov. Altruistic and aggressive types of behavior in a non-antagonistic differential game. Ural mathematical journal, Tome 4 (2018) no. 2, pp. 79-87. http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a8/

[1] Kleimenov A.F., Non-antagonistic Positional Differential Games, Nauka, Ekaterinburg, 1993, 185 pp. (in Russian.) | MR

[2] Kleimenov A.F., “Solutions in a non-antagonistic positional differential game”, J. Appl. Math. Mech., 61:5 (1997), 717–723 | DOI | MR

[3] Kleimenov A.F., “An approach to building dynamics for repeated bimatrix 2x2 games involving various behavior types”, Dynamic and Control, 1998, 195–204, Gordon and Breach Sci. Publ., London | DOI | MR

[4] Kleimenov A.F., “Altruistic behavior in a non-antagonistic positional differential game”, Autom. Remote Control, 78:4 (2017), 762–769 | DOI | MR

[5] Kleimenov A.F., Kryazhimskii A.V., Normal Behavior, Altruism and Aggression in Cooperative Game Dynamics, IIASA, Laxenburg, 1998, 47 pp. | DOI

[6] Kononenko A.F., “On equilibrium positional strategies in nonantagonistic differential games”, Dokl. Akad. Nauk SSSR, 231:2 (1976), 285–288 (in Russian.) | MR | Zbl

[7] Krasovskii N.N., Control of a Dynamical System, Nauka, Moscow, 1985, 520 pp. (in Russian) | MR

[8] Krasovskii N.N., Subbotin A.I., Game-Theoretical Control Problems, Springer-Verlag, New York, 1988, 517 pp. | MR | Zbl

[9] Petrosyan L.A., Zenkevich N.A., Shevkoplyas E.V., Game Theory, BHV-Petersburg, St. Petersburg, 2012, 424 pp. (in Russian.)