@article{UMJ_2018_4_2_a7,
author = {Konstantin S. Efimov and Alexander A. Makhnev},
title = {Automorphisms of a distance-regular graph with intersection array $\{39,36,4;1,1,36\}$},
journal = {Ural mathematical journal},
pages = {69--78},
year = {2018},
volume = {4},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a7/}
}
TY - JOUR
AU - Konstantin S. Efimov
AU - Alexander A. Makhnev
TI - Automorphisms of a distance-regular graph with intersection array $\{39,36,4;1,1,36\}$
JO - Ural mathematical journal
PY - 2018
SP - 69
EP - 78
VL - 4
IS - 2
UR - http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a7/
LA - en
ID - UMJ_2018_4_2_a7
ER -
Konstantin S. Efimov; Alexander A. Makhnev. Automorphisms of a distance-regular graph with intersection array $\{39,36,4;1,1,36\}$. Ural mathematical journal, Tome 4 (2018) no. 2, pp. 69-78. http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a7/
[1] Brouwer A.E., Cohen A.M., Neumaier A., Distance-Regular Graphs, Springer-Verlag, New York, 1989, 495 pp. | DOI | MR | Zbl
[2] Makhnev A.A., Nirova M.S., “On distance-regular graphs with $\lambda=2$”, J. Sib. Fed. Univ. Math. Phys., 7:2 (2014), 204–210 | MR
[3] Behbahani M., Lam C., “Strongly regular graphs with nontrivial automorphisms”, Discrete Math., 311:2–3 (2011), 132–144 | DOI | MR | Zbl
[4] Cameron P.J., Permutation Groups, v. 45, London Math. Soc. Student Texts, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl
[5] Gavrilyuk A.L., Makhnev A.A., “On automorphisms of distance-regular graph with the intersection array $\{56,45,1;1,9,56\}$”, Doklady Mathematics, 81:3 (2010), 439–442 | DOI | MR | Zbl
[6] Zavarnitsine A.V., “Finite simple groups with narrow prime spectrum”, Sib. Electron. Math. Izv., 6 (2009), S1–S12 | MR