Automorphisms of a distance-regular graph with intersection array $\{39,36,4;1,1,36\}$
Ural mathematical journal, Tome 4 (2018) no. 2, pp. 69-78

Voir la notice de l'article provenant de la source Math-Net.Ru

Makhnev and Nirova have found intersection arrays of distance-regular graphs with no more than 4096 vertices, in which $\lambda=2$ and $\mu=1$. They proposed the program of investigation of distance-regular graphs with $\lambda=2$ and $\mu=1$. In this paper the automorphisms of a distance-regular graph with intersection array $\{39, 36, 4; 1, 1, 36\}$ are studied.
Keywords: Strongly regular graph, Distance-regular graph.
@article{UMJ_2018_4_2_a7,
     author = {Konstantin S. Efimov and Alexander A. Makhnev},
     title = {Automorphisms of a distance-regular graph with intersection array $\{39,36,4;1,1,36\}$},
     journal = {Ural mathematical journal},
     pages = {69--78},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a7/}
}
TY  - JOUR
AU  - Konstantin S. Efimov
AU  - Alexander A. Makhnev
TI  - Automorphisms of a distance-regular graph with intersection array $\{39,36,4;1,1,36\}$
JO  - Ural mathematical journal
PY  - 2018
SP  - 69
EP  - 78
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a7/
LA  - en
ID  - UMJ_2018_4_2_a7
ER  - 
%0 Journal Article
%A Konstantin S. Efimov
%A Alexander A. Makhnev
%T Automorphisms of a distance-regular graph with intersection array $\{39,36,4;1,1,36\}$
%J Ural mathematical journal
%D 2018
%P 69-78
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a7/
%G en
%F UMJ_2018_4_2_a7
Konstantin S. Efimov; Alexander A. Makhnev. Automorphisms of a distance-regular graph with intersection array $\{39,36,4;1,1,36\}$. Ural mathematical journal, Tome 4 (2018) no. 2, pp. 69-78. http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a7/