Automorphisms of a distance-regular graph with intersection array $\{39,36,4;1,1,36\}$
Ural mathematical journal, Tome 4 (2018) no. 2, pp. 69-78
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Makhnev and Nirova have found intersection arrays of distance-regular graphs with no more than 4096 vertices, in which $\lambda=2$ and $\mu=1$. They proposed the program of investigation of distance-regular graphs with $\lambda=2$ and $\mu=1$. In this paper the automorphisms of a distance-regular graph with intersection array $\{39, 36, 4; 1, 1, 36\}$ are studied.
Keywords: Strongly regular graph, Distance-regular graph.
@article{UMJ_2018_4_2_a7,
     author = {Konstantin S. Efimov and Alexander A. Makhnev},
     title = {Automorphisms of a distance-regular graph with intersection array $\{39,36,4;1,1,36\}$},
     journal = {Ural mathematical journal},
     pages = {69--78},
     year = {2018},
     volume = {4},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a7/}
}
TY  - JOUR
AU  - Konstantin S. Efimov
AU  - Alexander A. Makhnev
TI  - Automorphisms of a distance-regular graph with intersection array $\{39,36,4;1,1,36\}$
JO  - Ural mathematical journal
PY  - 2018
SP  - 69
EP  - 78
VL  - 4
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a7/
LA  - en
ID  - UMJ_2018_4_2_a7
ER  - 
%0 Journal Article
%A Konstantin S. Efimov
%A Alexander A. Makhnev
%T Automorphisms of a distance-regular graph with intersection array $\{39,36,4;1,1,36\}$
%J Ural mathematical journal
%D 2018
%P 69-78
%V 4
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a7/
%G en
%F UMJ_2018_4_2_a7
Konstantin S. Efimov; Alexander A. Makhnev. Automorphisms of a distance-regular graph with intersection array $\{39,36,4;1,1,36\}$. Ural mathematical journal, Tome 4 (2018) no. 2, pp. 69-78. http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a7/

[1] Brouwer A.E., Cohen A.M., Neumaier A., Distance-Regular Graphs, Springer-Verlag, New York, 1989, 495 pp. | DOI | MR | Zbl

[2] Makhnev A.A., Nirova M.S., “On distance-regular graphs with $\lambda=2$”, J. Sib. Fed. Univ. Math. Phys., 7:2 (2014), 204–210 | MR

[3] Behbahani M., Lam C., “Strongly regular graphs with nontrivial automorphisms”, Discrete Math., 311:2–3 (2011), 132–144 | DOI | MR | Zbl

[4] Cameron P.J., Permutation Groups, v. 45, London Math. Soc. Student Texts, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[5] Gavrilyuk A.L., Makhnev A.A., “On automorphisms of distance-regular graph with the intersection array $\{56,45,1;1,9,56\}$”, Doklady Mathematics, 81:3 (2010), 439–442 | DOI | MR | Zbl

[6] Zavarnitsine A.V., “Finite simple groups with narrow prime spectrum”, Sib. Electron. Math. Izv., 6 (2009), S1–S12 | MR