Automorphisms of a distance-regular graph with intersection array $\{39,36,4;1,1,36\}$
Ural mathematical journal, Tome 4 (2018) no. 2, pp. 69-78
Voir la notice de l'article provenant de la source Math-Net.Ru
Makhnev and Nirova have found intersection arrays of distance-regular graphs with no more than 4096 vertices, in which $\lambda=2$ and $\mu=1$. They proposed the program of investigation of distance-regular graphs with $\lambda=2$ and $\mu=1$. In this paper the automorphisms of a distance-regular graph with intersection array $\{39, 36, 4; 1, 1, 36\}$ are studied.
Keywords:
Strongly regular graph, Distance-regular graph.
@article{UMJ_2018_4_2_a7,
author = {Konstantin S. Efimov and Alexander A. Makhnev},
title = {Automorphisms of a distance-regular graph with intersection array $\{39,36,4;1,1,36\}$},
journal = {Ural mathematical journal},
pages = {69--78},
publisher = {mathdoc},
volume = {4},
number = {2},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a7/}
}
TY - JOUR
AU - Konstantin S. Efimov
AU - Alexander A. Makhnev
TI - Automorphisms of a distance-regular graph with intersection array $\{39,36,4;1,1,36\}$
JO - Ural mathematical journal
PY - 2018
SP - 69
EP - 78
VL - 4
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a7/
LA - en
ID - UMJ_2018_4_2_a7
ER -
%0 Journal Article
%A Konstantin S. Efimov
%A Alexander A. Makhnev
%T Automorphisms of a distance-regular graph with intersection array $\{39,36,4;1,1,36\}$
%J Ural mathematical journal
%D 2018
%P 69-78
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a7/
%G en
%F UMJ_2018_4_2_a7
Konstantin S. Efimov; Alexander A. Makhnev. Automorphisms of a distance-regular graph with intersection array $\{39,36,4;1,1,36\}$. Ural mathematical journal, Tome 4 (2018) no. 2, pp. 69-78. http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a7/