@article{UMJ_2018_4_2_a6,
author = {Andrey A. Dryazhenkov and Mikhail M. Potapov},
title = {A stable method for linear equation in {Banach} spaces with smooth norms},
journal = {Ural mathematical journal},
pages = {56--68},
year = {2018},
volume = {4},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a6/}
}
Andrey A. Dryazhenkov; Mikhail M. Potapov. A stable method for linear equation in Banach spaces with smooth norms. Ural mathematical journal, Tome 4 (2018) no. 2, pp. 56-68. http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a6/
[1] Adams R.A., Fournier J.J.F., Sobolev Spaces, Elsevier, Amsterdam, 2003, 320 pp. | MR
[2] Bakushinskii A.B., “Methods for solving monotonic variational inequalities, based on the principle of iterative regularization”, USSR Computational Mathematics and Mathematical Physics, 17:6 (1977), 12–24 | DOI | MR
[3] Bakushinsky A., Goncharsky A., III-Posed Problems: Theory and Applications, Kluwer Academic Publishers, Dordrecht, 1994, 258 pp. | DOI | MR
[4] Brezis H., Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2011, 599 pp. | DOI | MR | Zbl
[5] Cioranescu I., Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer Academic Publishers, Dordrecht, 1990, 260 pp. | DOI | MR | Zbl
[6] Dryazhenkov A.A., Potapov M.M., “Constructive observability inequalities for weak generalized solutions of the wave equation with elastic restraint”, Comput. Math. Math. Phys., 54:6 (2014), 939–952 | DOI | MR | Zbl
[7] Dunford N., Schwartz J.T., Linear Operators. Part I: General Theory, Interscience Publishers, New York, 1958, 872 pp. | MR
[8] Ekeland I., Temam R., Convex Analysis and Variational Problems, North-Holland Publishing Company, Amsterdam, 1976, 394 pp. | DOI | MR | Zbl
[9] Ekeland I., Turnbull T., Infinite-Dimensional Optimization and Convexity, The University of Chicago Press, Chicago, 1983, 174 pp. | MR | Zbl
[10] Engl H.W., Hanke M., Neubauer A., Regularization of Inverse Problems, Kluwer Academic Publishers, Dordrecht, 1996, 322 pp. | MR | Zbl
[11] Il'in V.A., Kuleshov A.A., “On some properties of generalized solutions of the wave equation in the classes ${L_p}$ and ${W_p^1}$ for $p \geq 1$”, Differ. Equ., 48:11 (2012), 1470–1476 | DOI | MR | Zbl
[12] Ivanov V.K., “On linear problems that are not well-posed”, Soviet Mathematics Doklady, 3 (1962), 981–983 | MR
[13] Kantorovich L.V., Akilov G.P., Functional Analysis, Pergamon Press, Oxford, 1982, 604 pp. | DOI | MR | Zbl
[14] Krein S.G., Linear Equations in Banach Spaces, Birkhäuser, Boston, 1982, 106 pp. | DOI | MR | Zbl
[15] Lions J.L., “Exact controllability, stabilization and perturbations for distributed systems”, SIAM Rev., 30:1 (1988), 1–68 | DOI | MR | Zbl
[16] Morozov V.A., “Regularization of incorrectly posed problems and the choice of regularization parameter”, USSR Computational Mathematics and Mathematical Physics, 6:1 (1966), 242–251 | DOI | MR
[17] Phillips D.L., “A technique for the numerical solution of certain integral equations of the first kind”, J. ACM, 9:1 (1962), 84–97 | DOI | MR | Zbl
[18] Potapov M.M., “Strong convergence of difference approximations for problems of boundary control and observation for the wave equation”, Comput. Math. Math. Phys., 38:3 (1998), 373–383 | MR | Zbl
[19] Potapov M.M., “A stable method for solving linear equations with nonuniformly perturbed operators”, Dokl. Math., 59:2 (1999), 286–288 | MR | Zbl
[20] Riesz F., Sz.-Nagy B., Functional Analysis, Blackie Son Limited, London, 1956, 468 pp. | Zbl
[21] Scherzer O., Grasmair M., Grossauer H., Haltmeier M., Lenzen F., Variational Methods in Imaging, Springer, New York, 2009, 320 pp. | DOI | MR | Zbl
[22] Schuster T., Kaltenbacher B., Hofmann B., Kazimierski K.S., Regularization Methods in Banach Spaces, De Gruyter, Berlin, 2012, 283 pp. | MR | Zbl
[23] Tikhonov A.N., “Solution of incorrectly formulated problems and the regularization method”, Soviet Mathematics Doklady, 4:4 (1963), 1035–1038 | MR
[24] Tikhonov A.N., Arsenin V.Y., Solution of Ill-posed Problems, Winston Sons, Washington, 1977, 258 pp. | MR
[25] Tikhonov A.N., Leonov A.S., Yagola A.G., Nonlinear Ill-posed Problems, Chapman Hall, London, 1998, 386 pp. | MR | Zbl
[26] Zuazua E., “Propagation, observation, and control of waves approximated by finite difference methods”, SIAM Rev., 47:2 (2005), 197–243 | DOI | MR | Zbl