Order equalities in different metrics for moduli of smoothness of various orders
Ural mathematical journal, Tome 4 (2018) no. 2, pp. 24-32
Voir la notice de l'article provenant de la source Math-Net.Ru
IIn this paper, we obtain order equalities for the $k$th order $L_{q}(T)$-moduli of smoothness $\omega_{k}(f;\delta)_{q}$ in terms of expressions that contain the $l$th order $L_{p}(T)$-moduli of smoothness $\omega_{ l }(f;\delta)_{p}$ on the class of periodic functions $f\in L_{p}(T)$ with monotonically decreasing Fourier coefficients, where $1$ $k,l \in \mathbb{N},$ and $T=(-\pi,\pi].$
Keywords:
Inequalities of different metrics for moduli of smoothness, Order equality, Trigonometric Fourier series with monotone coefficients.
@article{UMJ_2018_4_2_a3,
author = {Niyazi A. Il'yasov},
title = {Order equalities in different metrics for moduli of smoothness of various orders},
journal = {Ural mathematical journal},
pages = {24--32},
publisher = {mathdoc},
volume = {4},
number = {2},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a3/}
}
Niyazi A. Il'yasov. Order equalities in different metrics for moduli of smoothness of various orders. Ural mathematical journal, Tome 4 (2018) no. 2, pp. 24-32. http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a3/