Order equalities in different metrics for moduli of smoothness of various orders
Ural mathematical journal, Tome 4 (2018) no. 2, pp. 24-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

IIn this paper, we obtain order equalities for the $k$th order $L_{q}(T)$-moduli of smoothness $\omega_{k}(f;\delta)_{q}$ in terms of expressions that contain the $l$th order $L_{p}(T)$-moduli of smoothness $\omega_{ l }(f;\delta)_{p}$ on the class of periodic functions $f\in L_{p}(T)$ with monotonically decreasing Fourier coefficients, where $1$ $k,l \in \mathbb{N},$ and $T=(-\pi,\pi].$
Keywords: Inequalities of different metrics for moduli of smoothness, Order equality, Trigonometric Fourier series with monotone coefficients.
@article{UMJ_2018_4_2_a3,
     author = {Niyazi A. Il'yasov},
     title = {Order equalities in different metrics for moduli of smoothness of various orders},
     journal = {Ural mathematical journal},
     pages = {24--32},
     year = {2018},
     volume = {4},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a3/}
}
TY  - JOUR
AU  - Niyazi A. Il'yasov
TI  - Order equalities in different metrics for moduli of smoothness of various orders
JO  - Ural mathematical journal
PY  - 2018
SP  - 24
EP  - 32
VL  - 4
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a3/
LA  - en
ID  - UMJ_2018_4_2_a3
ER  - 
%0 Journal Article
%A Niyazi A. Il'yasov
%T Order equalities in different metrics for moduli of smoothness of various orders
%J Ural mathematical journal
%D 2018
%P 24-32
%V 4
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a3/
%G en
%F UMJ_2018_4_2_a3
Niyazi A. Il'yasov. Order equalities in different metrics for moduli of smoothness of various orders. Ural mathematical journal, Tome 4 (2018) no. 2, pp. 24-32. http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a3/

[1] Bary N.K., A Treatise on Trigonometric Series I, II, v. I, II, Pergamon Press, Oxford, New York, 1964 ; Trigonometricheskie ryady, Fiz.-Mat. Giz. Publ., Moscow, 1961, 936 p. pp. | MR | Zbl

[2] Gol'dman M.L., “An imbedding criterion for different metrics for isotropic Besov spaces with arbitrary moduli of continuity”, Proc. Steklov Inst. Math., 1994, no. 2, 155–181

[3] Il'yasov N.A., “On the inequality between modulus of smoothness of various orders in different metrics”, Math. Notes, 50:2 (1991), 877–879 | DOI | MR | Zbl

[4] Il'yasov N.A., “On the direct theorem of approximation theory of periodic functions in different metrics”, Proc. Steklov Inst. Math., 219 (1997), 215–230 | Zbl

[5] Il'yasov N.A., “The inverse theorem in various metrics of approximation theory for periodic functions with monotone Fourier coefficients”, Trudy Inst. Mat. i Mekh. UrO RAN [Proc. of Krasovskii Institute of Mathematics and Mechanics of the UB RAS], 22:4 (2016), 153–162 (in Russian) | DOI | MR

[6] Il'yasov N.A., “The direct theorem of the theory of approximation of periodic functions with monotone Fourier coefficients in different metrics”, Proc. Steklov Inst. Math., 303:Suppl. 1 (2018), S100-S114 | DOI

[7] Kolyada V.I., “On relations between moduli of continuity in different metrics”, Proc. Steklov Inst. Math., 181 (1989), 127–148 | MR | Zbl

[8] Timan M.F., “Best approximation and modulus of smoothness of functions defined on the entire real axis”, Izv. Vyssh. Ucheb. Zaved. Mat., 1961, no. 6, 108–120 (in Russian) | MR | Zbl

[9] Timan M.F., “Some embedding theorems for $L_{p}$-classes of functions”, Dokl. Akad. Nauk SSSR, 193:6 (1970), 1251–1254 (in Russian) | MR | Zbl

[10] Timan M.F., “The imbedding of the $L_{p}^{(k)}$-classes of functions”, Izv. Vyssh. Ucheb. Zaved. Mat., 1974, no. 10(149), 61–74 (in Russian) | MR | Zbl

[11] Ul'yanov P.L., “The imbedding of certain function classes $H_{p}^{\omega}$”, Math. USSR–Izv., 2: 3 (1968), 601–637 | DOI

[12] Ul'yanov P.L., “Imbedding theorems and relations between best approximations (moduli of continuity) in different metrics”, Math. USSR–Sb., 10: 1 (1970), 103–126 | DOI | Zbl