One-sided $L$-approximation on a sphere of the characteristic function of a layer
Ural mathematical journal, Tome 4 (2018) no. 2, pp. 13-23

Voir la notice de l'article provenant de la source Math-Net.Ru

In the space $L(\mathbb{S}^{m-1})$ of functions integrable on the unit sphere $\mathbb{S}^{m-1}$ of the Euclidean space $\mathbb{R}^{m}$ of dimension $m\ge 3$, we discuss the problem of one-sided approximation to the characteristic function of a spherical layer $\mathbb{G}(J)=\{x=(x_1,x_2,\ldots,x_m)\in \mathbb{S}^{m-1}\colon x_m\in J\},$ where $J$ is one of the intervals $(a,1],$ $(a,b),$ and $[-1,b),$ $-1 a$ by the set of algebraic polynomials of given degree $n$ in $m$ variables. This problem reduces to the one-dimensional problem of one-sided approximation in the space $L^\phi(-1,1)$ with the ultraspherical weight $ \phi(t)=(1-t^2)^\alpha,\ \alpha=(m-3)/2$, to the characteristic function of the interval $J$. This result gives a solution of the problem of one-sided approximation to the characteristic function of a spherical layer in all cases when a solution of the corresponding one-dimensional problem known. In the present paper, we use results by A.G. Babenko, M.V. Deikalova, and Sz.G. Revesz (2015) and M.V. Deikalova and A.Yu. Torgashova (2018) on the one-sided approximation to the characteristic functions of intervals.
Keywords: One-sided approximation, characteristic function, spherical layer, spherical cap, algebraic polynomials.
@article{UMJ_2018_4_2_a2,
     author = {Marina V. Deikalova and Anastasiya Yu. Torgashova},
     title = {One-sided $L$-approximation on a sphere of the characteristic function of a layer},
     journal = {Ural mathematical journal},
     pages = {13--23},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a2/}
}
TY  - JOUR
AU  - Marina V. Deikalova
AU  - Anastasiya Yu. Torgashova
TI  - One-sided $L$-approximation on a sphere of the characteristic function of a layer
JO  - Ural mathematical journal
PY  - 2018
SP  - 13
EP  - 23
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a2/
LA  - en
ID  - UMJ_2018_4_2_a2
ER  - 
%0 Journal Article
%A Marina V. Deikalova
%A Anastasiya Yu. Torgashova
%T One-sided $L$-approximation on a sphere of the characteristic function of a layer
%J Ural mathematical journal
%D 2018
%P 13-23
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a2/
%G en
%F UMJ_2018_4_2_a2
Marina V. Deikalova; Anastasiya Yu. Torgashova. One-sided $L$-approximation on a sphere of the characteristic function of a layer. Ural mathematical journal, Tome 4 (2018) no. 2, pp. 13-23. http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a2/