@article{UMJ_2018_4_2_a2,
author = {Marina V. Deikalova and Anastasiya Yu. Torgashova},
title = {One-sided $L$-approximation on a sphere of the characteristic function of a layer},
journal = {Ural mathematical journal},
pages = {13--23},
year = {2018},
volume = {4},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a2/}
}
TY - JOUR AU - Marina V. Deikalova AU - Anastasiya Yu. Torgashova TI - One-sided $L$-approximation on a sphere of the characteristic function of a layer JO - Ural mathematical journal PY - 2018 SP - 13 EP - 23 VL - 4 IS - 2 UR - http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a2/ LA - en ID - UMJ_2018_4_2_a2 ER -
Marina V. Deikalova; Anastasiya Yu. Torgashova. One-sided $L$-approximation on a sphere of the characteristic function of a layer. Ural mathematical journal, Tome 4 (2018) no. 2, pp. 13-23. http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a2/
[1] Babenko A.G., Deikalova M.V., Revesz Sz.G., “Weighted one-sided integral approximations to characteristic functions of intervals by polynomials on a closed interval”, Proc. Steklov Inst. Math., 297, Suppl. 1. (2017), 11–18 | DOI | MR
[2] Babenko A.G., Kryakin Yu.V., Yudin V.A., “One-sided approximation in $L$ of the characteristic function of an interval by trigonometric polynomials”, Proc. Steklov Inst. Math., 280, Suppl. 1. (2013), 39–52 | DOI | MR
[3] Beckermann B., Bustamante J., Martinez-Cruz R., Quesada J.M., “Gaussian, Lobatto and Radau positive quadrature rules with a prescribed abscissa”, Calcolo, 51:2 (2014), 319–328 | DOI | MR | Zbl
[4] Bojanic R., DeVore R., “On polynomials of best one-sided approximation”, Enseign. Math., 12 (1966), 139–164 | MR | Zbl
[5] Bustamante J., Martínez-Cruz R., Quesada J.M., “Quasi orthogonal Jacobi polynomials and best one-sided $L_1$ approximation to step functions”, J. Approx. Theory, 198 (2015), 10–23 | DOI | MR | Zbl
[6] Bustamante J., Quesada J.M., Martínez-Cruz R., “Best one-sided $L_1$ approximation to the Heaviside and sign functions”, J. Approx. Theory, 164:6 (2012), 791–802 | DOI | MR | Zbl
[7] Dai F., Xu Y., Approximation Theory and Harmonic Analysis on Spheres and Balls, Springer Science Business Media, New York, 2013, 440 pp. | DOI | MR | Zbl
[8] Deikalova M.V., “The Taikov functional in the space of algebraic polynomials on the multidimensional Euclidean sphere”, Math Notes, 84:3–4 (2008), 498–514 | DOI | MR | Zbl
[9] Deikalova M.V., “Integral approximation of the characteristic function of a spherical cap by algebraic polynomials”, Proc. Steklov Inst. Math., 273, Suppl. 1. (2011), 74–85 | DOI | MR | Zbl
[10] Deikalova M.V., “Several extremal approximation problems for the characteristic function of a spherical layer”, Proc. Steklov Inst. Math., 277, Suppl. 1. (2012), 79–92 | DOI | MR
[11] Deikalova M.V., Torgashova A.Yu., “One-sided integral approximation of the characteristic function of an interval by algebraic polynomials”, Proc. of Krasovskii Institute of Mathematics and Mechanics of the UB RAS, 24:4 (2018), 110—125 (in Russian.) | DOI | MR
[12] Dunford N., Schwartz J.T., Linear Operators. Part I: General Theory, Wiley-Interscience, New York, 1988, 872 pp. | MR | Zbl
[13] Gorbachev D.V., Selected Problems in Functional Analysis and Approximation Theory and Their Applications, TulGU, Tula, 2004, 152 pp. (in Russian.)
[14] Korneichuk N.P., Ligun A.A., Doronin V.G., Approximation with Constraints, Naukova Dumka, Kiev, 1982, 254 pp. (in Russian.) | MR
[15] Krylov V.I., Approximate Calculation of Integrals, Dover Publ., Mineola, New York, 2006, 368 pp. | MR
[16] Li X.J., Vaaler J.D., “Some trigonometric extremal functions and the Erdös–Turán type inequalities”, Indiana Univ. Math. J., 48:1 (1999), 183–236 | DOI | MR | Zbl
[17] Motornyi V.P., Motornaya O.V., Nitiema P.K., “One-sided approximation of a step by algebraic polynomials in the mean”, Ukrainian Math. J., 62:3 (2010), 467–482 | DOI | MR