One-sided $L$-approximation on a sphere of the characteristic function of a layer
Ural mathematical journal, Tome 4 (2018) no. 2, pp. 13-23 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the space $L(\mathbb{S}^{m-1})$ of functions integrable on the unit sphere $\mathbb{S}^{m-1}$ of the Euclidean space $\mathbb{R}^{m}$ of dimension $m\ge 3$, we discuss the problem of one-sided approximation to the characteristic function of a spherical layer $\mathbb{G}(J)=\{x=(x_1,x_2,\ldots,x_m)\in \mathbb{S}^{m-1}\colon x_m\in J\},$ where $J$ is one of the intervals $(a,1],$ $(a,b),$ and $[-1,b),$ $-1 a$ by the set of algebraic polynomials of given degree $n$ in $m$ variables. This problem reduces to the one-dimensional problem of one-sided approximation in the space $L^\phi(-1,1)$ with the ultraspherical weight $ \phi(t)=(1-t^2)^\alpha,\ \alpha=(m-3)/2$, to the characteristic function of the interval $J$. This result gives a solution of the problem of one-sided approximation to the characteristic function of a spherical layer in all cases when a solution of the corresponding one-dimensional problem known. In the present paper, we use results by A.G. Babenko, M.V. Deikalova, and Sz.G. Revesz (2015) and M.V. Deikalova and A.Yu. Torgashova (2018) on the one-sided approximation to the characteristic functions of intervals.
Keywords: One-sided approximation, characteristic function, spherical layer, spherical cap, algebraic polynomials.
@article{UMJ_2018_4_2_a2,
     author = {Marina V. Deikalova and Anastasiya Yu. Torgashova},
     title = {One-sided $L$-approximation on a sphere of the characteristic function of a layer},
     journal = {Ural mathematical journal},
     pages = {13--23},
     year = {2018},
     volume = {4},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a2/}
}
TY  - JOUR
AU  - Marina V. Deikalova
AU  - Anastasiya Yu. Torgashova
TI  - One-sided $L$-approximation on a sphere of the characteristic function of a layer
JO  - Ural mathematical journal
PY  - 2018
SP  - 13
EP  - 23
VL  - 4
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a2/
LA  - en
ID  - UMJ_2018_4_2_a2
ER  - 
%0 Journal Article
%A Marina V. Deikalova
%A Anastasiya Yu. Torgashova
%T One-sided $L$-approximation on a sphere of the characteristic function of a layer
%J Ural mathematical journal
%D 2018
%P 13-23
%V 4
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a2/
%G en
%F UMJ_2018_4_2_a2
Marina V. Deikalova; Anastasiya Yu. Torgashova. One-sided $L$-approximation on a sphere of the characteristic function of a layer. Ural mathematical journal, Tome 4 (2018) no. 2, pp. 13-23. http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a2/

[1] Babenko A.G., Deikalova M.V., Revesz Sz.G., “Weighted one-sided integral approximations to characteristic functions of intervals by polynomials on a closed interval”, Proc. Steklov Inst. Math., 297, Suppl. 1. (2017), 11–18 | DOI | MR

[2] Babenko A.G., Kryakin Yu.V., Yudin V.A., “One-sided approximation in $L$ of the characteristic function of an interval by trigonometric polynomials”, Proc. Steklov Inst. Math., 280, Suppl. 1. (2013), 39–52 | DOI | MR

[3] Beckermann B., Bustamante J., Martinez-Cruz R., Quesada J.M., “Gaussian, Lobatto and Radau positive quadrature rules with a prescribed abscissa”, Calcolo, 51:2 (2014), 319–328 | DOI | MR | Zbl

[4] Bojanic R., DeVore R., “On polynomials of best one-sided approximation”, Enseign. Math., 12 (1966), 139–164 | MR | Zbl

[5] Bustamante J., Martínez-Cruz R., Quesada J.M., “Quasi orthogonal Jacobi polynomials and best one-sided $L_1$ approximation to step functions”, J. Approx. Theory, 198 (2015), 10–23 | DOI | MR | Zbl

[6] Bustamante J., Quesada J.M., Martínez-Cruz R., “Best one-sided $L_1$ approximation to the Heaviside and sign functions”, J. Approx. Theory, 164:6 (2012), 791–802 | DOI | MR | Zbl

[7] Dai F., Xu Y., Approximation Theory and Harmonic Analysis on Spheres and Balls, Springer Science Business Media, New York, 2013, 440 pp. | DOI | MR | Zbl

[8] Deikalova M.V., “The Taikov functional in the space of algebraic polynomials on the multidimensional Euclidean sphere”, Math Notes, 84:3–4 (2008), 498–514 | DOI | MR | Zbl

[9] Deikalova M.V., “Integral approximation of the characteristic function of a spherical cap by algebraic polynomials”, Proc. Steklov Inst. Math., 273, Suppl. 1. (2011), 74–85 | DOI | MR | Zbl

[10] Deikalova M.V., “Several extremal approximation problems for the characteristic function of a spherical layer”, Proc. Steklov Inst. Math., 277, Suppl. 1. (2012), 79–92 | DOI | MR

[11] Deikalova M.V., Torgashova A.Yu., “One-sided integral approximation of the characteristic function of an interval by algebraic polynomials”, Proc. of Krasovskii Institute of Mathematics and Mechanics of the UB RAS, 24:4 (2018), 110—125 (in Russian.) | DOI | MR

[12] Dunford N., Schwartz J.T., Linear Operators. Part I: General Theory, Wiley-Interscience, New York, 1988, 872 pp. | MR | Zbl

[13] Gorbachev D.V., Selected Problems in Functional Analysis and Approximation Theory and Their Applications, TulGU, Tula, 2004, 152 pp. (in Russian.)

[14] Korneichuk N.P., Ligun A.A., Doronin V.G., Approximation with Constraints, Naukova Dumka, Kiev, 1982, 254 pp. (in Russian.) | MR

[15] Krylov V.I., Approximate Calculation of Integrals, Dover Publ., Mineola, New York, 2006, 368 pp. | MR

[16] Li X.J., Vaaler J.D., “Some trigonometric extremal functions and the Erdös–Turán type inequalities”, Indiana Univ. Math. J., 48:1 (1999), 183–236 | DOI | MR | Zbl

[17] Motornyi V.P., Motornaya O.V., Nitiema P.K., “One-sided approximation of a step by algebraic polynomials in the mean”, Ukrainian Math. J., 62:3 (2010), 467–482 | DOI | MR