One-sided $L$-approximation on a sphere of the characteristic function of a layer
Ural mathematical journal, Tome 4 (2018) no. 2, pp. 13-23
Voir la notice de l'article provenant de la source Math-Net.Ru
In the space $L(\mathbb{S}^{m-1})$ of functions integrable on the unit sphere $\mathbb{S}^{m-1}$ of the Euclidean space $\mathbb{R}^{m}$ of dimension $m\ge 3$, we discuss the problem of one-sided approximation to the characteristic function of a spherical layer $\mathbb{G}(J)=\{x=(x_1,x_2,\ldots,x_m)\in \mathbb{S}^{m-1}\colon x_m\in J\},$ where $J$ is one of the intervals $(a,1],$ $(a,b),$ and $[-1,b),$ $-1 a$ by the set of algebraic polynomials of given degree $n$ in $m$ variables.
This problem reduces to the one-dimensional problem of one-sided approximation in the space $L^\phi(-1,1)$ with the ultraspherical weight $ \phi(t)=(1-t^2)^\alpha,\ \alpha=(m-3)/2$, to the characteristic function of the interval $J$.
This result gives a solution of the problem of one-sided approximation to the characteristic function of a spherical layer in all cases when a solution of the corresponding one-dimensional problem known. In the present paper, we use results by A.G. Babenko, M.V. Deikalova, and Sz.G. Revesz (2015) and M.V. Deikalova and A.Yu. Torgashova (2018) on the one-sided approximation to the characteristic functions of intervals.
Keywords:
One-sided approximation, characteristic function, spherical layer, spherical cap, algebraic polynomials.
@article{UMJ_2018_4_2_a2,
author = {Marina V. Deikalova and Anastasiya Yu. Torgashova},
title = {One-sided $L$-approximation on a sphere of the characteristic function of a layer},
journal = {Ural mathematical journal},
pages = {13--23},
publisher = {mathdoc},
volume = {4},
number = {2},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a2/}
}
TY - JOUR AU - Marina V. Deikalova AU - Anastasiya Yu. Torgashova TI - One-sided $L$-approximation on a sphere of the characteristic function of a layer JO - Ural mathematical journal PY - 2018 SP - 13 EP - 23 VL - 4 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a2/ LA - en ID - UMJ_2018_4_2_a2 ER -
Marina V. Deikalova; Anastasiya Yu. Torgashova. One-sided $L$-approximation on a sphere of the characteristic function of a layer. Ural mathematical journal, Tome 4 (2018) no. 2, pp. 13-23. http://geodesic.mathdoc.fr/item/UMJ_2018_4_2_a2/