Evaluation of some non-elementary integrals involving sine, cosine, exponential and logarithmic integrals: part II
Ural mathematical journal, Tome 4 (2018) no. 1, pp. 43-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The non-elementary integrals ${Si}_{\beta,\alpha}=\int [\sin{(\lambda x^\beta)}/(\lambda x^\alpha)] dx,$ $\beta\ge1,$ $\alpha>\beta+1$ and ${Ci}_{\beta,\alpha}=\int [\cos{(\lambda x^\beta)}/(\lambda x^\alpha)] dx,$ $\beta\ge1,$ $\alpha>2\beta+1$, where $\{\beta,\alpha\}\in\mathbb{R}$, are evaluated in terms of the hypergeometric function $_{2}F_3$. On the other hand, the exponential integral ${Ei}_{\beta,\alpha}=\int (e^{\lambda x^\beta}/x^\alpha) dx,$ $\beta\ge1,$ $\alpha>\beta+1$ is expressed in terms of $_{2}F_2$. The method used to evaluate these integrals consists of expanding the integrand as a Taylor series and integrating the series term by term.
Keywords: Non-elementary integrals, Sine integral, Cosine integral, Exponential integral, Logarithmic integral, Hyperbolic sine integral, Hyperbolic cosine integral, Hypergeometric functions.
@article{UMJ_2018_4_1_a3,
     author = {Victor Nijimbere},
     title = {Evaluation of some non-elementary integrals involving sine, cosine, exponential and logarithmic integrals: part {II}},
     journal = {Ural mathematical journal},
     pages = {43--55},
     year = {2018},
     volume = {4},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2018_4_1_a3/}
}
TY  - JOUR
AU  - Victor Nijimbere
TI  - Evaluation of some non-elementary integrals involving sine, cosine, exponential and logarithmic integrals: part II
JO  - Ural mathematical journal
PY  - 2018
SP  - 43
EP  - 55
VL  - 4
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2018_4_1_a3/
LA  - en
ID  - UMJ_2018_4_1_a3
ER  - 
%0 Journal Article
%A Victor Nijimbere
%T Evaluation of some non-elementary integrals involving sine, cosine, exponential and logarithmic integrals: part II
%J Ural mathematical journal
%D 2018
%P 43-55
%V 4
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2018_4_1_a3/
%G en
%F UMJ_2018_4_1_a3
Victor Nijimbere. Evaluation of some non-elementary integrals involving sine, cosine, exponential and logarithmic integrals: part II. Ural mathematical journal, Tome 4 (2018) no. 1, pp. 43-55. http://geodesic.mathdoc.fr/item/UMJ_2018_4_1_a3/

[1] Abramowitz M., Stegun I.A., Handbook of mathematical functions with formulas, graphs and mathematical tables, National Bureau of Standards, 1964, 1046 pp. | MR

[2] Chiccoli C., Lorenzutta S., Maino G., “Concerning some integrals of the generalized exponential-integral function”, Computers Math. Applic., 23:11 (1992), 13–21 | DOI | MR | Zbl

[3] Chen X., “Exponential asymptotics and law of the iterated logarithm for intersection local times of random walks”, Ann. Probab., 32:4 (2004), 3248–3300 | DOI | MR | Zbl

[4] Marchisotto E.A., Zakeri G.-A., “An invitation to integration in finite terms”, College Math. J., 25:4 (1994), 295–308 | DOI | Zbl

[5] Nijimbere V., “Evaluation of the non-elementary integral $\int e^{\lambda x^\alpha} dx$, $\alpha\ge2$, and other related integrals”, Ural Math. J., 3:2 (2017), 130–142 | DOI | MR

[6] Nijimbere V., “Evaluation of some non-elementary integrals involving sine, cosine, exponential and logarithmic integrals: Part I”, Ural Math. J., 2018 (to appear)

[7] NIST Digital Library of Mathematical Functions http://dlmf.nist.gov/

[8] Rahman M., Applications of Fourier transforms to generalized functions, Witt Press, 2011, 192 pp. | MR | Zbl

[9] Rosenlicht M., “Integration in finite terms”, Amer. Math. Monthly, 79:9 (1972), 963–972 | DOI | MR | Zbl

[10] Shore S.N., “Blue sky and hot piles: the evolution of radiative transfer theory from atmospheres to nuclear reactors”, Historia Mathematica, 29:2 (2002), 463–489 | DOI | MR | Zbl