On interpolation by almost trigonometric splines
Ural mathematical journal, Tome 3 (2017) no. 2, pp. 67-73 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The existence and uniqueness of an interpolating periodic spline defined on an equidistant mesh by the linear differential operator $\mathcal{L}_{2n+2}(D)=D^{2}(D^{2}+1^{2})(D^{2}+2^{2})\cdots (D^{2}+n^{2})$ with $n\in\mathbb{N}$ are reproved under the final restriction on the step of the mesh. Under the same restriction, sharp estimates of the error of approximation by such interpolating periodic splines are obtained.
Keywords: Splines, Approximation, Linear differential operator.
Mots-clés : Interpolation
@article{UMJ_2017_3_2_a8,
     author = {Sergey I. Novikov},
     title = {On interpolation by almost trigonometric splines},
     journal = {Ural mathematical journal},
     pages = {67--73},
     year = {2017},
     volume = {3},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2017_3_2_a8/}
}
TY  - JOUR
AU  - Sergey I. Novikov
TI  - On interpolation by almost trigonometric splines
JO  - Ural mathematical journal
PY  - 2017
SP  - 67
EP  - 73
VL  - 3
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2017_3_2_a8/
LA  - en
ID  - UMJ_2017_3_2_a8
ER  - 
%0 Journal Article
%A Sergey I. Novikov
%T On interpolation by almost trigonometric splines
%J Ural mathematical journal
%D 2017
%P 67-73
%V 3
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2017_3_2_a8/
%G en
%F UMJ_2017_3_2_a8
Sergey I. Novikov. On interpolation by almost trigonometric splines. Ural mathematical journal, Tome 3 (2017) no. 2, pp. 67-73. http://geodesic.mathdoc.fr/item/UMJ_2017_3_2_a8/

[1] Korneichuk N.P., Splines in approximation theory, Nauka, Moscow, 1984, 352 pp. (in Russian)

[2] Micchelli C.A., Cardinal $L$-splines, Studies in spline functions and approximation theory, Acad. Press, New York etc., 1976, 203–250

[3] Novikov S.I., “Approximation of the class $W_{\infty}^{{\cal L}_{n}}$ by interpolation periodic $L$-splines”, Approximation of functions by polynomials and splines, Akad. Nauk SSSR, Ural. Sc. Center, Sverdlovsk, 1985, 118—126 (in Russian)

[4] Novikov S.I., “Generalization of the Rolle theorem”, East J. Approx., 1:4 (1995), 571–575

[5] Nguen Thi T.H., “The operator $D(D^2 +1^2 )\cdots (D^2 +n^2)$ and trigonometric interpolation”, Anal. Math., 15:4 (1989), 291–306 (in Russian)

[6] Nguen Thi T.H., Extremal problems for some classes of smooth periodic functions, Doctoral dissertation, Steklov Institute of Math., Moscow, 1994, 219 pp. (in Russian)

[7] Prudnikov A.P., Brychkov Yu.A., Marichev O.I., Integrals and series. Elementary functions, Nauka, Moscow, 1981, 800 pp. (in Russian)

[8] Schoenberg I.J., “On Micchelli's theory of cardinal $L$-splines”, Studies in spline functions and approximation theory, Acad. Press, New York etc., 1976, 251–276

[9] Shevaldin V.T., “A problem of extremal interpolation”, Mat. Zametki, 29:4 (1981), 603–622 (in Russian)

[10] Shevaldin V.T., “Interpolation periodic $L$-splines with uniform nodes”, Approximation of functions by polynomials and splines, Akad. Nauk SSSR, Ural. Sc. Center, Sverdlovsk, 1985, 140–147 (in Russian)

[11] Stechkin S.B., Subbotin Yu.N., Splines in numerical mathematics, Nauka, Moscow, 1976, 248 pp. (in Russian)

[12] Tikhomirov V.M., “Best methods of approximation and interpolation of differentiable functions in the space $C[-1,1]$”, Mat. Sb., 80:122 (1969), 290—304 (in Russian)

[13] Zhensykbaev A.A., “Approximation of differentiable periodic functions by splines on a uniform subdivision”, Mat. Zametki, 13:6 (1973), 807–816 (in Russian)

[14] Zhang J., “$C$-curves: an extension of cubic curves”, Comput. Aided Geom. Design, 13 (1996), 199–217

[15] Roman F., Manni C., Speleers H., “Spectral analysis of matrices in Galerkin methods based on generalized $B$-splines with high smoothness”, Numer. Math., 135:1 (2017), 169—216 | DOI

[16] Mainar E., Peña J.M., Sánchez-Reyes J., “Shape preserving alternatives to the rational Bezier model”, Comput. Aided Geom. Design, 18 (2001), 37–60 | DOI