On interpolation by almost trigonometric splines
Ural mathematical journal, Tome 3 (2017) no. 2, pp. 67-73

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence and uniqueness of an interpolating periodic spline defined on an equidistant mesh by the linear differential operator $\mathcal{L}_{2n+2}(D)=D^{2}(D^{2}+1^{2})(D^{2}+2^{2})\cdots (D^{2}+n^{2})$ with $n\in\mathbb{N}$ are reproved under the final restriction on the step of the mesh. Under the same restriction, sharp estimates of the error of approximation by such interpolating periodic splines are obtained.
Keywords: Splines, Approximation, Linear differential operator.
Mots-clés : Interpolation
@article{UMJ_2017_3_2_a8,
     author = {Sergey I. Novikov},
     title = {On interpolation by almost trigonometric splines},
     journal = {Ural mathematical journal},
     pages = {67--73},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2017_3_2_a8/}
}
TY  - JOUR
AU  - Sergey I. Novikov
TI  - On interpolation by almost trigonometric splines
JO  - Ural mathematical journal
PY  - 2017
SP  - 67
EP  - 73
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2017_3_2_a8/
LA  - en
ID  - UMJ_2017_3_2_a8
ER  - 
%0 Journal Article
%A Sergey I. Novikov
%T On interpolation by almost trigonometric splines
%J Ural mathematical journal
%D 2017
%P 67-73
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2017_3_2_a8/
%G en
%F UMJ_2017_3_2_a8
Sergey I. Novikov. On interpolation by almost trigonometric splines. Ural mathematical journal, Tome 3 (2017) no. 2, pp. 67-73. http://geodesic.mathdoc.fr/item/UMJ_2017_3_2_a8/