@article{UMJ_2017_3_2_a7,
author = {Alexander A. Kovalevsky},
title = {Convergence of solutions of bilateral problems in variable domains and related questions},
journal = {Ural mathematical journal},
pages = {51--66},
year = {2017},
volume = {3},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2017_3_2_a7/}
}
Alexander A. Kovalevsky. Convergence of solutions of bilateral problems in variable domains and related questions. Ural mathematical journal, Tome 3 (2017) no. 2, pp. 51-66. http://geodesic.mathdoc.fr/item/UMJ_2017_3_2_a7/
[1] De Giorgi E., Franzoni T., “Su un tipo di convergenza variazionale”, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 58:6 (1975), 842–850
[2] Zhikov V. V., “Questions of convergence, duality, and averaging for functionals of the calculus of variations”, Math. USSR-Izv., 23:2 (1984), 243–276 | DOI
[3] Dal Maso G., An introduction to $\Gamma$-convergence, Birkhäuser, Boston, 1993, 352 pp. | DOI
[4] Zhikov V.V., “On passage to the limit in nonlinear variational problems”, Russian Acad. Sci. Sb. Math., 76:2 (1993), 427–459 | DOI
[5] Kovalevskii A.A., “Averaging of variable variational problems”, Dokl. Akad. Nauk Ukr. SSR., A, no. 8, 1988, 6–9 (in Russian)
[6] Kovalevskii A.A., “On the connectedness of subsets of Sobolev spaces and the $\Gamma$-convergence of functionals with varying domain of definition”, Nelinein. Granichnye Zadachi, 1 (1989), 48—54 (in Russian)
[7] Kovalevskii A.A., “On the $\Gamma$-convergence of integral functionals defined on Sobolev weakly connected spaces”, Ukrainian Math. J., 48:5 (1996), 683–698 | DOI
[8] Hruslov E.Ya., “The asymptotic behavior of solutions of the second boundary value problem under fragmentation of the boundary of the domain”, Math. USSR-Sb., 35:2 (1979), 266–282 | DOI
[9] Kovalevsky A.A., “On the convergence of solutions of variational problems with bilateral obstacles in variable domains”, Proc. Steklov Inst. Math. (Suppl.), 296, suppl. 1 (2017), 151–163 | DOI
[10] Kovalevsky A.A., “On the convergence of solutions to bilateral problems with the zero lower constraint and an arbitrary upper constraint in variable domains”, Nonlinear Anal., 147 (2016), 63–79 | DOI
[11] Vainberg M.M., Variational method and method of monotone operators in the theory of nonlinear equations, Wiley, New York, 1974, 356 pp.
[12] Kovalevskii A.A., “Some problems connected with the problem of averaging variational problems for functionals with a variable domain”, Current Analysis and its Applications, 1989, 62–70, Naukova dumka, Kiev
[13] Kovalevsky A.A., “Obstacle problems in variable domains”, Complex Var. Elliptic Equ., 56:12 (2011), 1071–1083 | DOI
[14] Adams R.A., Sobolev spaces, Academic Press, New York, 1975, 286 pp.
[15] Malý J., Ziemer W.P., Fine regularity of solutions of elliptic partial differential equations., AMS, Providence, 1997, 291 pp.
[16] Kovalevskii A.A., “$G$-convergence and homogenization of nonlinear elliptic operators in divergence form with variable domain”, Russian Acad. Sci. Izv. Math., 44:3 (1995), 431–460 | DOI
[17] Kovalevskij A.A., “Conditions of the $\Gamma$-convergence and homogenization of integral functionals with different domains of the definition”, Dokl. Akad. Nauk Ukr. SSR, 1991, no. 4, 5–8 (in Russian)
[18] Kovalevskii A.A., “On necessary and sufficient conditions for the $\Gamma$-convergence of integral functionals with different domains of definition”, Nelinein. Granichnye Zadachi, 4 (1992), 29–39 (in Russian)
[19] Kovalevskii A.A., Rudakova O.A., “On the $\Gamma$-compactness of integral functionals with degenerate integrands”, Nelinein. Granichnye Zadachi, 15 (2005), 149–145 (in Russian)
[20] Rudakova O.A., “On $\Gamma$-convergence of integral functionals defined on various weighted Sobolev spaces ”, Ukrainian Math. J., 61 (2009), 121–139 | DOI
[21] Kovalevsky A.A., “On $L^1$-functions with a very singular behaviour”, Nonlinear Anal., 85 (2013), 66—77 | DOI
[22] Murat F., Sur l'homogeneisation d'inequations elliptiques du 2ème ordre, relatives au convexe $K(\psi_1,\psi_2)=\{v\in H^1_0(\Omega)\,\vert\,\psi_1\leqslant v\leqslant\psi_2$ p.p. dans $\Omega\}$., Laboratoire d'Analyse Numérique, no. 76013. Univ. Paris VI., 1976, 23 pp.
[23] Kovalevsky A.A., “Variational problems with unilateral pointwise functional constraints in variable domains”, Trudy Inst. Mat. i Mekh. UrO RAN, 23:2 (2017), 133–150 (in Russian) | DOI
[24] Kovalevsky A.A., Rudakova O.A., “Variational problems with pointwise constraints and degeneration in variable domains”, Differ. Equ. Appl., 1:4 (2009), 517–559 | DOI
[25] Gilbarg D., Trudinger N.S., Elliptic partial differential equations of second order, Springer, Berlin, 1983, 518 pp. | DOI
[26] Kuratowski K., Topology, v. I, Academic Press, New York, 1966, 580 pp.
[27] Mosco U., “Convergence of convex sets and of solutions of variational inequalities”, Adv. Math., 3:4 (1969), 510–585