On the best approximation of the infinitesimal generator of a contraction semigroup in a Hilbert space
Ural mathematical journal, Tome 3 (2017) no. 2, pp. 40-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $A$ be the infinitesimal generator of a strongly continuous contraction semigroup in a Hilbert space $H$. We give an upper estimate for the best approximation of the operator $A$ by bounded linear operators with a prescribed norm in the space $H$ on the class $Q_2 = \{x\in \mathcal{D}(A^2) : \|A^2 x\| \leq 1\}$, where $\mathcal D(A^2)$ denotes the domain of $A^2$.
Keywords: Contraction semigroup, Infinitesimal generator, Stechkin's problem.
@article{UMJ_2017_3_2_a5,
     author = {Elena E. Berdysheva and Maria A. Filatova},
     title = {On the best approximation of the infinitesimal generator of a contraction semigroup in a {Hilbert} space},
     journal = {Ural mathematical journal},
     pages = {40--45},
     year = {2017},
     volume = {3},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2017_3_2_a5/}
}
TY  - JOUR
AU  - Elena E. Berdysheva
AU  - Maria A. Filatova
TI  - On the best approximation of the infinitesimal generator of a contraction semigroup in a Hilbert space
JO  - Ural mathematical journal
PY  - 2017
SP  - 40
EP  - 45
VL  - 3
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2017_3_2_a5/
LA  - en
ID  - UMJ_2017_3_2_a5
ER  - 
%0 Journal Article
%A Elena E. Berdysheva
%A Maria A. Filatova
%T On the best approximation of the infinitesimal generator of a contraction semigroup in a Hilbert space
%J Ural mathematical journal
%D 2017
%P 40-45
%V 3
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2017_3_2_a5/
%G en
%F UMJ_2017_3_2_a5
Elena E. Berdysheva; Maria A. Filatova. On the best approximation of the infinitesimal generator of a contraction semigroup in a Hilbert space. Ural mathematical journal, Tome 3 (2017) no. 2, pp. 40-45. http://geodesic.mathdoc.fr/item/UMJ_2017_3_2_a5/

[1] Arestov V.V., “Approximation of unbounded operators by bounded operators and related extremal problems”, Russian Math. Surveys, 51:6 (1996), 1093–1126 | DOI

[2] Arestov V.V., Gabushin V.N., “Best approximation of unbounded operators by bounded operators”, Russian Math. (Iz. VUZ), 39:11 (1995), 38–63

[3] Arestov V.V., Filatova M.A., “Best approximation of the differentiation operator in the space $L_2$ on the semiaxis”, J. Approx. Theory, 187 (2014), 65–81 | DOI

[4] Babenko V.F., Korneichuk N.P., Kofanov V.A., Pichugov S.A., Inequalities for derivatives and their applications, Naukova Dumka, Kiev, 2003 (in Russian)

[5] Berdysheva E.E. On the best approximation of the differentiation operator in $L_2(0,\infty)$, East J. Approx, 2:3 (1996), 281–287

[6] Grubb G., Distributions and Operators, Springer Science and Business Media, NY, 2008, 464 pp. | DOI

[7] Hardy G.H., Littlewood J.E., Pólya G., Inequalities. Cambridge University Press, 1934. 314 p.

[8] Hille E., Phillips R.S., Functional Analysis and Semigroups, American Mathematical Society, 1957, 808 pp.

[9] Kato T., “On an inequality of Hardy, Littlewood and Pólya”, Adv. Math., 7 (1971), 217–218 | DOI

[10] Kato T., Perturbation Theory for Linear Operators, Springer, Verlag–Berlin–Heidelberg, 1995, 623 pp. | DOI

[11] Stechkin S.B., “Best approximation of linear operators”, Math. Notes, 1 (1967), 91–99. | DOI