Mots-clés : Algebraic polynomial
@article{UMJ_2017_3_2_a3,
author = {Vitalii V. Arestov},
title = {A characterization of extremal elements in some linear problems},
journal = {Ural mathematical journal},
pages = {22--32},
year = {2017},
volume = {3},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2017_3_2_a3/}
}
Vitalii V. Arestov. A characterization of extremal elements in some linear problems. Ural mathematical journal, Tome 3 (2017) no. 2, pp. 22-32. http://geodesic.mathdoc.fr/item/UMJ_2017_3_2_a3/
[1] Arestov V. V., Deikalova M. V., “Nikol'skii inequality for algebraic polynomials on a multidimensional Euclidean sphere”, Proc. Steklov Inst. Math., 284:Suppl. 1 (2014), S9–S23 | DOI
[2] Arestov V., Deikalova M., “Nikol'skii inequality between the uniform norm and $L_q$-norm with ultraspherical weight of algebraic polynomials on an interval”, Comput. Methods Funct. Theory, 15:4 (2015), 689–708 | DOI
[3] Arestov V., Deikalova M., “Nikol'skii inequality between the uniform norm and $L_q$-norm with Jacobi weight of algebraic polynomials on an interval”, Analysis Math., 42:2 (2016), 91–120 | DOI
[4] Arestov V., Deikalova M., Horváth Á., “On Nikol'skii type inequality between the uniform norm and the integral $q$-norm with Laguerre weight of algebraic polynomials on the half-line”, J. Approx. Theory, 222 (2017), 40–54 | DOI
[5] Babenko V. F., Korneichuk N. P., Ligun A. A., Extremal properties of polynomials and splines, Nova Science, New York, 1996
[6] Day M. M., Normed linear space, Springer, Berlin; Göttingen; Heidelberg, 1958
[7] Diestel J., Geometry of Banach spaces: selected topics, Springer, Berlin, 1975
[8] Dunford N., Schwartz J., Linear operators: general theory, Interscience, New York, 1958
[9] Gol'shtein E.G., Duality theory in mathematical programming and its applications, Nauka, Moscow, 1971, 351 pp. (in Russian)
[10] Handbook of the Geometry of Banach Spaces, v. 1, eds. W.B. Johnson and J. Lindenstrauss, Elsevier, 2001
[11] James R., “Characterizations of reexivity”, Studia Mathematica, 23:3 (1964), 205–216
[12] Kolmogorov A. N., Fomin S. V., Elements of the theory of functions and functional analysis, Fizmatlit, Moscow, 2004
[13] Korneichuk N. P., Extremal problems of approximation theory, Nauka, Moscow, 1976 (in Russian)
[14] Milovanović G. V., Mitrinović D. S., Rassias Th. M., Topics in polynomials: extremal problems, inequalities, zeros, World Scientific, Singapore, 1994, 821 pp.
[15] Nikol'skii S. M., “Inequalities for entire functions of finite degree and their application in the theory of differentiable functions of several variables”, Trudy Mat. Inst. Steklova, 38 (1951), 244–278 (in Russian)
[16] Simonov I. E., Glazyrina P. Yu. Sharp Markov–Nikol'skii inequality with respect to the uniform norm and the integral norm with Chebyshev weight, J. Approx. Theory, 192 (2015), 69–81 | DOI
[17] Singer I., Best approximation in normed linear spaces by elements of linear subspaces, Springer, Berlin, 1970
[18] Szegő G., Zygmund A., “On certain mean values of polynomials”, J. Anal. Math., 3:1 (1953), 225–244