A characterization of extremal elements in some linear problems
Ural mathematical journal, Tome 3 (2017) no. 2, pp. 22-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give a characterization of elements of a subspace of a complex Banach space with the property that the norm of a bounded linear functional on the subspace is attained at those elements. In particular, we discuss properties of polynomials that are extremal in sharp pointwise Nikol'skii inequalities for algebraic polynomials in a weighted $L_q$-space on a finite or infinite interval.
Keywords: Complex Banach space, Bounded linear functional on a subspace, Pointwise Nikol'skii inequality.
Mots-clés : Algebraic polynomial
@article{UMJ_2017_3_2_a3,
     author = {Vitalii V. Arestov},
     title = {A characterization of extremal elements in some linear problems},
     journal = {Ural mathematical journal},
     pages = {22--32},
     year = {2017},
     volume = {3},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2017_3_2_a3/}
}
TY  - JOUR
AU  - Vitalii V. Arestov
TI  - A characterization of extremal elements in some linear problems
JO  - Ural mathematical journal
PY  - 2017
SP  - 22
EP  - 32
VL  - 3
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2017_3_2_a3/
LA  - en
ID  - UMJ_2017_3_2_a3
ER  - 
%0 Journal Article
%A Vitalii V. Arestov
%T A characterization of extremal elements in some linear problems
%J Ural mathematical journal
%D 2017
%P 22-32
%V 3
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2017_3_2_a3/
%G en
%F UMJ_2017_3_2_a3
Vitalii V. Arestov. A characterization of extremal elements in some linear problems. Ural mathematical journal, Tome 3 (2017) no. 2, pp. 22-32. http://geodesic.mathdoc.fr/item/UMJ_2017_3_2_a3/

[1] Arestov V. V., Deikalova M. V., “Nikol'skii inequality for algebraic polynomials on a multidimensional Euclidean sphere”, Proc. Steklov Inst. Math., 284:Suppl. 1 (2014), S9–S23 | DOI

[2] Arestov V., Deikalova M., “Nikol'skii inequality between the uniform norm and $L_q$-norm with ultraspherical weight of algebraic polynomials on an interval”, Comput. Methods Funct. Theory, 15:4 (2015), 689–708 | DOI

[3] Arestov V., Deikalova M., “Nikol'skii inequality between the uniform norm and $L_q$-norm with Jacobi weight of algebraic polynomials on an interval”, Analysis Math., 42:2 (2016), 91–120 | DOI

[4] Arestov V., Deikalova M., Horváth Á., “On Nikol'skii type inequality between the uniform norm and the integral $q$-norm with Laguerre weight of algebraic polynomials on the half-line”, J. Approx. Theory, 222 (2017), 40–54 | DOI

[5] Babenko V. F., Korneichuk N. P., Ligun A. A., Extremal properties of polynomials and splines, Nova Science, New York, 1996

[6] Day M. M., Normed linear space, Springer, Berlin; Göttingen; Heidelberg, 1958

[7] Diestel J., Geometry of Banach spaces: selected topics, Springer, Berlin, 1975

[8] Dunford N., Schwartz J., Linear operators: general theory, Interscience, New York, 1958

[9] Gol'shtein E.G., Duality theory in mathematical programming and its applications, Nauka, Moscow, 1971, 351 pp. (in Russian)

[10] Handbook of the Geometry of Banach Spaces, v. 1, eds. W.B. Johnson and J. Lindenstrauss, Elsevier, 2001

[11] James R., “Characterizations of reexivity”, Studia Mathematica, 23:3 (1964), 205–216

[12] Kolmogorov A. N., Fomin S. V., Elements of the theory of functions and functional analysis, Fizmatlit, Moscow, 2004

[13] Korneichuk N. P., Extremal problems of approximation theory, Nauka, Moscow, 1976 (in Russian)

[14] Milovanović G. V., Mitrinović D. S., Rassias Th. M., Topics in polynomials: extremal problems, inequalities, zeros, World Scientific, Singapore, 1994, 821 pp.

[15] Nikol'skii S. M., “Inequalities for entire functions of finite degree and their application in the theory of differentiable functions of several variables”, Trudy Mat. Inst. Steklova, 38 (1951), 244–278 (in Russian)

[16] Simonov I. E., Glazyrina P. Yu. Sharp Markov–Nikol'skii inequality with respect to the uniform norm and the integral norm with Chebyshev weight, J. Approx. Theory, 192 (2015), 69–81 | DOI

[17] Singer I., Best approximation in normed linear spaces by elements of linear subspaces, Springer, Berlin, 1970

[18] Szegő G., Zygmund A., “On certain mean values of polynomials”, J. Anal. Math., 3:1 (1953), 225–244