A characterization of extremal elements in some linear problems
Ural mathematical journal, Tome 3 (2017) no. 2, pp. 22-32

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a characterization of elements of a subspace of a complex Banach space with the property that the norm of a bounded linear functional on the subspace is attained at those elements. In particular, we discuss properties of polynomials that are extremal in sharp pointwise Nikol'skii inequalities for algebraic polynomials in a weighted $L_q$-space on a finite or infinite interval.
Keywords: Complex Banach space, Bounded linear functional on a subspace, Pointwise Nikol'skii inequality.
Mots-clés : Algebraic polynomial
@article{UMJ_2017_3_2_a3,
     author = {Vitalii V. Arestov},
     title = {A characterization of extremal elements in some linear problems},
     journal = {Ural mathematical journal},
     pages = {22--32},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2017_3_2_a3/}
}
TY  - JOUR
AU  - Vitalii V. Arestov
TI  - A characterization of extremal elements in some linear problems
JO  - Ural mathematical journal
PY  - 2017
SP  - 22
EP  - 32
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2017_3_2_a3/
LA  - en
ID  - UMJ_2017_3_2_a3
ER  - 
%0 Journal Article
%A Vitalii V. Arestov
%T A characterization of extremal elements in some linear problems
%J Ural mathematical journal
%D 2017
%P 22-32
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2017_3_2_a3/
%G en
%F UMJ_2017_3_2_a3
Vitalii V. Arestov. A characterization of extremal elements in some linear problems. Ural mathematical journal, Tome 3 (2017) no. 2, pp. 22-32. http://geodesic.mathdoc.fr/item/UMJ_2017_3_2_a3/