On $\Lambda$-convergence almost everywhere of multiple trigonometric Fourier series
Ural mathematical journal, Tome 3 (2017) no. 2, pp. 14-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider one type of convergence of multiple trigonometric Fourier series intermediate between the convergence over cubes and the $\lambda $-convergence for $\lambda >1$. The well-known result on the almost everywhere convergence over cubes of Fourier series of functions from the class $ L (\ln ^ + L) ^ d \ln ^ + \ln ^ + \ln ^ + L ([0,2 \pi)^d ) $ has been generalized to the case of the $ \Lambda $-convergence for some sequences $\Lambda$.
Keywords: Trigonometric Fourier series, Rectangular partial sums, Convergence almost everywhere.
@article{UMJ_2017_3_2_a2,
     author = {Nikolai Yu. Antonov},
     title = {On $\Lambda$-convergence almost everywhere of multiple trigonometric {Fourier} series},
     journal = {Ural mathematical journal},
     pages = {14--21},
     year = {2017},
     volume = {3},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2017_3_2_a2/}
}
TY  - JOUR
AU  - Nikolai Yu. Antonov
TI  - On $\Lambda$-convergence almost everywhere of multiple trigonometric Fourier series
JO  - Ural mathematical journal
PY  - 2017
SP  - 14
EP  - 21
VL  - 3
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2017_3_2_a2/
LA  - en
ID  - UMJ_2017_3_2_a2
ER  - 
%0 Journal Article
%A Nikolai Yu. Antonov
%T On $\Lambda$-convergence almost everywhere of multiple trigonometric Fourier series
%J Ural mathematical journal
%D 2017
%P 14-21
%V 3
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2017_3_2_a2/
%G en
%F UMJ_2017_3_2_a2
Nikolai Yu. Antonov. On $\Lambda$-convergence almost everywhere of multiple trigonometric Fourier series. Ural mathematical journal, Tome 3 (2017) no. 2, pp. 14-21. http://geodesic.mathdoc.fr/item/UMJ_2017_3_2_a2/

[1] Luzin N. N., Integral and trigonometric series, GITTL, Moscow – Leningrad:, 1951, 550 pp. (in Russian)

[2] Kolmogoroff A., “Une série de Fourier – Lebesgue divergente preque partout”, Fund. math., 4 (1923), 324–328

[3] Kolmogoroff A., “Une série de Fourier – Lebesgue divergente partout”, C. r. Acad. sci. Paris, 183 (1926), 1327–1329

[4] Carleson L., “On convergence and growth of partial sums of Fourier series”, Acta math., 116:1–2 (1966), 135–157 | DOI

[5] Hunt R.A., “On the convergence of Fourier series”, Orthogonal expansions and their continuous analogues., SIU Press, Carbondale, Illinois, 1968, 235–255

[6] Sjölin P., “An inequality of Paley and convergence a.e. of Walsh-Fourier series”, Arkiv för mat., 7 (1969), 551–570 | DOI

[7] Antonov N. Yu., “Convergence of Fourier series”, East Journal on Approximations, 2:2 (1996), 187–196

[8] Konyagin S. V., “On everywhere divergence of trigonometric Fourier series”, Sb. Math., 191:1 (2000), 97–120 | DOI

[9] Tevzadze N.R., “The convergence of the double Fourier series of a square integrable function”, Soobshch. AN GSSR, 58:2 (1970), 277–279 (in Russian)

[10] Fefferman C., “On the convergence of multiple Fourier series”, Bull. Amer. Math. Soc., 77:5 (1971), 744—745 | DOI

[11] Sjölin P., “Convergence almost everywhere of ertain singular integrals and multiple Fourier series”, Arkiv för mat., 9:1 (1971), 65–90 | DOI

[12] Antonov N. Yu., “Almost everywhere convergence over cubes of multiple trigonometric Fourier series”, Izv. Math., 68:2 (2004), 223–241 | DOI

[13] Antonov N. Yu., “On the almost everywhere convergence of sequences of multiple rectangular Fourier sums”, Proc. Steklov Inst. Math., 264:Suppl. 1 (2009), S1–S18 | DOI

[14] Konyagin S. V., “On divergence of trigonometric Fourier series over cubes”, Acta Sci. Math. (Szeged), 61 (1995), 305–329

[15] Fefferman C., “On the divergence of multiple Fourier series”, Bull. Amer. Math. Soc., 77:2 (1971), 191—195 | DOI

[16] Bakhbukh M., Nikishin E. M., “The convergence of the double Fourier series of continuous functions”, Siberian Math. Journal, 14:6 (1973), 832–839 | DOI

[17] Bakhvalov A. N., “Divergence everywhere of the Fourier series of continuous functions of several variables”, Sb. Math., 188:8 (1997), 1153—1170 | DOI

[18] Bakhvalov A. N., “$\lambda$ -divergence of the Fourier series of continuous functions of several variables”, Mathematical Notes, 72:3–4 (2002), 454–465 | DOI

[19] Antonov N. Yu., “On divergence almost everywhere of Fourier series of continuous functions of two variables”, Izvestiya of Saratov University., Math. Mech. Inform., 14, no. 4(2), 2014, 495—502 (in Russian)

[20] Stein E.M., “On limits of sequences of operators”, Ann. Math., 74:1 (1961), 140–170

[21] Zygmund A., Trigonometric series, v. 1, Cambridge Univ. Press, New York:, 1959