On $\Lambda$-convergence almost everywhere of multiple trigonometric Fourier series
Ural mathematical journal, Tome 3 (2017) no. 2, pp. 14-21

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider one type of convergence of multiple trigonometric Fourier series intermediate between the convergence over cubes and the $\lambda $-convergence for $\lambda >1$. The well-known result on the almost everywhere convergence over cubes of Fourier series of functions from the class $ L (\ln ^ + L) ^ d \ln ^ + \ln ^ + \ln ^ + L ([0,2 \pi)^d ) $ has been generalized to the case of the $ \Lambda $-convergence for some sequences $\Lambda$.
Keywords: Trigonometric Fourier series, Rectangular partial sums, Convergence almost everywhere.
@article{UMJ_2017_3_2_a2,
     author = {Nikolai Yu. Antonov},
     title = {On $\Lambda$-convergence almost everywhere of multiple trigonometric {Fourier} series},
     journal = {Ural mathematical journal},
     pages = {14--21},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2017_3_2_a2/}
}
TY  - JOUR
AU  - Nikolai Yu. Antonov
TI  - On $\Lambda$-convergence almost everywhere of multiple trigonometric Fourier series
JO  - Ural mathematical journal
PY  - 2017
SP  - 14
EP  - 21
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2017_3_2_a2/
LA  - en
ID  - UMJ_2017_3_2_a2
ER  - 
%0 Journal Article
%A Nikolai Yu. Antonov
%T On $\Lambda$-convergence almost everywhere of multiple trigonometric Fourier series
%J Ural mathematical journal
%D 2017
%P 14-21
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2017_3_2_a2/
%G en
%F UMJ_2017_3_2_a2
Nikolai Yu. Antonov. On $\Lambda$-convergence almost everywhere of multiple trigonometric Fourier series. Ural mathematical journal, Tome 3 (2017) no. 2, pp. 14-21. http://geodesic.mathdoc.fr/item/UMJ_2017_3_2_a2/