Evaluation of the non-elementary integral ${\int e^{\lambda x^\alpha} dx}$, ${\alpha\ge2}$ and other related integrals
Ural mathematical journal, Tome 3 (2017) no. 2, pp. 130-142 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A formula for the non-elementary integral $\int e^{\lambda x^\alpha} dx$ where $\alpha$ is real and greater or equal two, is obtained in terms of the confluent hypergeometric function $_{1}F_1$ by expanding the integrand as a Taylor series. This result is verified by directly evaluating the area under the Gaussian Bell curve, corresponding to $\alpha=2$, using the asymptotic expression for the confluent hypergeometric function and the Fundamental Theorem of Calculus (FTC). Two different but equivalent expressions, one in terms of the confluent hypergeometric function $_{1}F_1$ and another one in terms of the hypergeometric function $_1F_2$, are obtained for each of these integrals, $\int\cosh(\lambda x^\alpha)dx$, $\int\sinh(\lambda x^\alpha)dx$, $\int \cos(\lambda x^\alpha)dx$ and $\int\sin(\lambda x^\alpha)dx$, $\lambda\in \mathbb{C},\alpha\ge2$. And the hypergeometric function $_1F_2$ is expressed in terms of the confluent hypergeometric function $_1F_1$. Some of the applications of the non-elementary integral $\int e^{\lambda x^\alpha} dx, \alpha\ge 2$ such as the Gaussian distribution and the Maxwell-Bortsman distribution are given.
Keywords: Non-elementary integral, Hypergeometric function, Confluent hypergeometric function, Asymptotic evaluation, Fundamental theorem of calculus, Gaussian, Maxwell-Bortsman distribution.
@article{UMJ_2017_3_2_a13,
     author = {Victor Nijimbere},
     title = {Evaluation of the non-elementary integral ${\int e^{\lambda x^\alpha} dx}$, ${\alpha\ge2}$ and other related integrals},
     journal = {Ural mathematical journal},
     pages = {130--142},
     year = {2017},
     volume = {3},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2017_3_2_a13/}
}
TY  - JOUR
AU  - Victor Nijimbere
TI  - Evaluation of the non-elementary integral ${\int e^{\lambda x^\alpha} dx}$, ${\alpha\ge2}$ and other related integrals
JO  - Ural mathematical journal
PY  - 2017
SP  - 130
EP  - 142
VL  - 3
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2017_3_2_a13/
LA  - en
ID  - UMJ_2017_3_2_a13
ER  - 
%0 Journal Article
%A Victor Nijimbere
%T Evaluation of the non-elementary integral ${\int e^{\lambda x^\alpha} dx}$, ${\alpha\ge2}$ and other related integrals
%J Ural mathematical journal
%D 2017
%P 130-142
%V 3
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2017_3_2_a13/
%G en
%F UMJ_2017_3_2_a13
Victor Nijimbere. Evaluation of the non-elementary integral ${\int e^{\lambda x^\alpha} dx}$, ${\alpha\ge2}$ and other related integrals. Ural mathematical journal, Tome 3 (2017) no. 2, pp. 130-142. http://geodesic.mathdoc.fr/item/UMJ_2017_3_2_a13/

[1] Abramowitz M., Stegun I.A., Handbook of mathematical functions with formulas, graphs and mathematical tables, National Bureau of Standards, 1964, 1046 pp.

[2] Billingsley P., Probability and measure., Wiley series in Probability and Mathematical Statistics, 3rd, 1995, 608. pp.

[3] Krantz S.G., Handbook of complex variables, MA Birkhäuser, Boston, 1999, 290 pp. | DOI

[4] Marchisotto E.A., Zakeri G.-A., “An invitation to integration in finite terms”, College Math. J., 25:4 (1994), 295–308 | DOI

[5] NIST Digital Library of Mathematical Functions } {\tt http://dlmf.nist.gov/

[6] Rosenlicht M., “Integration in finite terms”, Amer. Math. Monthly, 79: 9 (1972), 963–972