Positive definite functions and sharp inequalities for periodic functions
Ural mathematical journal, Tome 3 (2017) no. 2, pp. 82-99 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\varphi$ be a positive definite and continuous function on $\mathbb{R}$, and let $\mu$ be the corresponding Bochner measure. For fixed $\varepsilon,\tau\in\mathbb{R}$, $\varepsilon\ne 0$, we consider a linear operator $A_{\varepsilon,\tau}$ generated by the function $\varphi$: $$ A_{\varepsilon,\tau}(f)(t):=\int_{\mathbb{R}}e^{-iu\tau} f(t+\varepsilon u)d\mu(u) ,\quad t\in\mathbb{R},\quad f\in C(\mathbb{T}). $$ Let $J$ be a convex and nondecreasing function on $[0,+\infty)$. In this paper, we prove the inequalities $$ \| A_{\varepsilon,\tau}(f)\|_p\leqslant \varphi(0)\|f\|_p, \quad \int_{\mathbb{T}}J\left(|A_{\varepsilon,\tau}(f)(t)|\right)\,dt \le \int_{\mathbb{T}}J\left(\varphi(0)|f(t)|\right)\,dt $$ for $p\in [1,\infty]$ and $f\in C(\mathbb{T})$ and obtain criteria of extremal function. We study in more detail the case in which $\varepsilon=1/n$, $n\in \mathbb{N}$, $\tau=1$, and $\varphi(x)\equiv e^{i\beta x}\psi(x)$, where $\beta\in\mathbb{R}$ and the function $\psi$ is $2$-periodic and positive definite. In turn, we consider in more detail the case where the 2-periodic function $\psi$ is constructed by means of a finite positive definite function $g$. As a particular case, we obtain the Bernstein–Szegő inequality for the derivative in the Weyl–Nagy sense of trigonometric polynomials. In one of our results, we consider the case of the family of functions $g_{1/n,h}(x):=hg(x)+(1-1/n-h)g(nx)$, where $n\in\mathbb{N}$, $n\ge 2$, $-1/n\le h\le 1-1/n$, and the function $g\in C(\mathbb{R})$ is even, nonnegative, decreasing, and convex on $(0,+\infty)$ with $\mathrm{supp}\ g\subset[-1,1]$. This case is related to the positive definiteness of piecewise linear functions. We also obtain some general interpolation formulas for periodic functions and trigonometric polynomials which include the known interpolation formulas of M. Riesz, of G. Szegő, and of A.I. Kozko for trigonometric polynomials.
Keywords: Positive definite function, Trigonometric polynomial, Weyl-Nagy derivative, Bernstein-Szegő inequality
Mots-clés : Interpolation formula.
@article{UMJ_2017_3_2_a10,
     author = {Viktor P. Zastavnyi},
     title = {Positive definite functions and sharp inequalities for periodic functions},
     journal = {Ural mathematical journal},
     pages = {82--99},
     year = {2017},
     volume = {3},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2017_3_2_a10/}
}
TY  - JOUR
AU  - Viktor P. Zastavnyi
TI  - Positive definite functions and sharp inequalities for periodic functions
JO  - Ural mathematical journal
PY  - 2017
SP  - 82
EP  - 99
VL  - 3
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2017_3_2_a10/
LA  - en
ID  - UMJ_2017_3_2_a10
ER  - 
%0 Journal Article
%A Viktor P. Zastavnyi
%T Positive definite functions and sharp inequalities for periodic functions
%J Ural mathematical journal
%D 2017
%P 82-99
%V 3
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2017_3_2_a10/
%G en
%F UMJ_2017_3_2_a10
Viktor P. Zastavnyi. Positive definite functions and sharp inequalities for periodic functions. Ural mathematical journal, Tome 3 (2017) no. 2, pp. 82-99. http://geodesic.mathdoc.fr/item/UMJ_2017_3_2_a10/

[1] Akhiezer N.I., Lectures on approximation theory, Nauka,, Moscow, 1965 (in Russian)

[2] Akhiezer N.I., Lectures on integral transforms, Vishcha Shkola, Kharkov, 1984 (in Russian)

[3] Arestov V.V., “On integral inequalities for trigonometric polynomials and their derivatives”, Math. USSR-Izv., 18:1 (1982), 1–17 | DOI

[4] Arestov V.V., “Sharp inequalities for trigonometric polynomials with respect to integral functionals”, Proc. Steklov Inst. Math. (Suppl.), 273, suppl. 1 (2011), S21–S36 | DOI

[5] Arestov V.V., Glazyrina P.Yu. Bernstein–Szegő inequality for fractional derivatives of trigonometric polynomials, Proc. Steklov Inst. Math. (Suppl.), 288, suppl. 1 (2015), 13–28 36 | DOI

[6] Boas R.P., Jr., Entire functions, Academic Press, New York, 1954

[7] Bisgaard T.M., Sasvári Z., Characteristic functions and moment sequences: positive definiteness in probability, Nova Sci. Publishers, New York, 2000

[8] Gashkov S.B., “Bernstein's inequality, Riesz's identity and Euler's formula for the sum of reciprocal squares”, Mat. Pros., Ser. 3, 18 (2014), 143–171

[9] Gorin E.A., “Bernstein inequalities from the operator theory point of view”, Vestnik Kharkov. Univ. Prikl. Mat. Mekh., 45 (1980), 77–105

[10] Kahane J.-P., Séries de Fourier absolument convergentes, Springer, Berlin, 1970

[11] Kozko A.I., “The exact constants in the Bernstein–Zygmund–Szegő inequalities with fractional derivatives and the Jackson–Nikolskii inequality for trigonometric polynomials”, East J. Approx., 4:3 (1998), 391–416

[12] Lieb E., Loss M., Analysis. Graduete Studies in Math., v. 14, AMS, Providence, Rhode Island, 1997.

[13] Lizorkin P.I., “Bounds for trigonometrical integrals and an inequality of Bernstein for fractional derivatives”, Izv. Akad. Nauk SSSR Ser. Mat., 29:1 (1965), 109–126

[14] Lukacs E., Characteristic functions, Griffin, London, 1970

[15] Manov A., Zastavnyi V., “Positive definiteness of piecewise-linear function”, Expositiones Mathematicae, 35 (2017), 357–361 | DOI

[16] Riesz M., “Formule d'interpolation pour la dérivée d'un polynome trigonométrique”, C. R. Acad. Sci., 158 (1914), 1152–1154

[17] Riesz M., “Eine trigonometrische interpolationsformel und einige ungleichungen für polynome”, Jahresbericht der Deutschen Mathematiker-Vereinigung, 23 (1914), 354–368

[18] Rudin W., Real and complex analysis, 3nd, McGraw-Hill Int. Editions, Singapore, 1987

[19] Sasvári Z., Positive definite and definitizable functions, Akademie Verlag, Berlin, 1994

[20] Szegő G., “Über einen Satz des Herrn Serge Bernstein”, Schriften der Königsberger Gelehrten Gesellschaft, 5:4 (1928), 59–70

[21] Sz.-Nagy B., “Über gewisse Extremalfragen bei transformierten trigonometrischen Entwicklungen. I. Periodischer Fall”, Berichte der Sächsischen Akademie der Wissenschaften zu Leipzig, 90 (1938), 103–134

[22] Timan A.F., Theory of approximation of functions of a real variable, Pergamon Press, Oxford, 1963

[23] Trigub R.M., Belinsky E.S., Fourier analysis and approximation of functions, Kluwer Acad. Publ., Dordrecht, 2004

[24] Vakhaniya N.N., Tarieladze V.I., and Chobanyan S.A., Probability distributions in Banach spaces, Nauka, M., 1985 (in Russian)

[25] Vinogradov O.L., “Sharp error estimates for the numerical differentiation formulas on the classes of entire functions of exponential type”, Siberian Math. J., 48:3 (2007), 430–445 | DOI

[26] Williamson R.E., “Multiply monotone functions and their Laplace transforms”, Duke Math. J., 23:2 (1956), 189–207 | DOI

[27] Zastavnyi V.P., “On positive definiteness of some functions”, Journal of Multivariate Analysis, 73:1 (2000), 55–81 | DOI

[28] Zygmund A., Trigonometric series., v. II, Cambridge Univ. Press, Cambridge, 1959