Mots-clés : Interpolation formula.
@article{UMJ_2017_3_2_a10,
author = {Viktor P. Zastavnyi},
title = {Positive definite functions and sharp inequalities for periodic functions},
journal = {Ural mathematical journal},
pages = {82--99},
year = {2017},
volume = {3},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2017_3_2_a10/}
}
Viktor P. Zastavnyi. Positive definite functions and sharp inequalities for periodic functions. Ural mathematical journal, Tome 3 (2017) no. 2, pp. 82-99. http://geodesic.mathdoc.fr/item/UMJ_2017_3_2_a10/
[1] Akhiezer N.I., Lectures on approximation theory, Nauka,, Moscow, 1965 (in Russian)
[2] Akhiezer N.I., Lectures on integral transforms, Vishcha Shkola, Kharkov, 1984 (in Russian)
[3] Arestov V.V., “On integral inequalities for trigonometric polynomials and their derivatives”, Math. USSR-Izv., 18:1 (1982), 1–17 | DOI
[4] Arestov V.V., “Sharp inequalities for trigonometric polynomials with respect to integral functionals”, Proc. Steklov Inst. Math. (Suppl.), 273, suppl. 1 (2011), S21–S36 | DOI
[5] Arestov V.V., Glazyrina P.Yu. Bernstein–Szegő inequality for fractional derivatives of trigonometric polynomials, Proc. Steklov Inst. Math. (Suppl.), 288, suppl. 1 (2015), 13–28 36 | DOI
[6] Boas R.P., Jr., Entire functions, Academic Press, New York, 1954
[7] Bisgaard T.M., Sasvári Z., Characteristic functions and moment sequences: positive definiteness in probability, Nova Sci. Publishers, New York, 2000
[8] Gashkov S.B., “Bernstein's inequality, Riesz's identity and Euler's formula for the sum of reciprocal squares”, Mat. Pros., Ser. 3, 18 (2014), 143–171
[9] Gorin E.A., “Bernstein inequalities from the operator theory point of view”, Vestnik Kharkov. Univ. Prikl. Mat. Mekh., 45 (1980), 77–105
[10] Kahane J.-P., Séries de Fourier absolument convergentes, Springer, Berlin, 1970
[11] Kozko A.I., “The exact constants in the Bernstein–Zygmund–Szegő inequalities with fractional derivatives and the Jackson–Nikolskii inequality for trigonometric polynomials”, East J. Approx., 4:3 (1998), 391–416
[12] Lieb E., Loss M., Analysis. Graduete Studies in Math., v. 14, AMS, Providence, Rhode Island, 1997.
[13] Lizorkin P.I., “Bounds for trigonometrical integrals and an inequality of Bernstein for fractional derivatives”, Izv. Akad. Nauk SSSR Ser. Mat., 29:1 (1965), 109–126
[14] Lukacs E., Characteristic functions, Griffin, London, 1970
[15] Manov A., Zastavnyi V., “Positive definiteness of piecewise-linear function”, Expositiones Mathematicae, 35 (2017), 357–361 | DOI
[16] Riesz M., “Formule d'interpolation pour la dérivée d'un polynome trigonométrique”, C. R. Acad. Sci., 158 (1914), 1152–1154
[17] Riesz M., “Eine trigonometrische interpolationsformel und einige ungleichungen für polynome”, Jahresbericht der Deutschen Mathematiker-Vereinigung, 23 (1914), 354–368
[18] Rudin W., Real and complex analysis, 3nd, McGraw-Hill Int. Editions, Singapore, 1987
[19] Sasvári Z., Positive definite and definitizable functions, Akademie Verlag, Berlin, 1994
[20] Szegő G., “Über einen Satz des Herrn Serge Bernstein”, Schriften der Königsberger Gelehrten Gesellschaft, 5:4 (1928), 59–70
[21] Sz.-Nagy B., “Über gewisse Extremalfragen bei transformierten trigonometrischen Entwicklungen. I. Periodischer Fall”, Berichte der Sächsischen Akademie der Wissenschaften zu Leipzig, 90 (1938), 103–134
[22] Timan A.F., Theory of approximation of functions of a real variable, Pergamon Press, Oxford, 1963
[23] Trigub R.M., Belinsky E.S., Fourier analysis and approximation of functions, Kluwer Acad. Publ., Dordrecht, 2004
[24] Vakhaniya N.N., Tarieladze V.I., and Chobanyan S.A., Probability distributions in Banach spaces, Nauka, M., 1985 (in Russian)
[25] Vinogradov O.L., “Sharp error estimates for the numerical differentiation formulas on the classes of entire functions of exponential type”, Siberian Math. J., 48:3 (2007), 430–445 | DOI
[26] Williamson R.E., “Multiply monotone functions and their Laplace transforms”, Duke Math. J., 23:2 (1956), 189–207 | DOI
[27] Zastavnyi V.P., “On positive definiteness of some functions”, Journal of Multivariate Analysis, 73:1 (2000), 55–81 | DOI
[28] Zygmund A., Trigonometric series., v. II, Cambridge Univ. Press, Cambridge, 1959