Approximation by local parabolic splines constructed on the basis of interpolationin the mean
Ural mathematical journal, Tome 3 (2017) no. 1, pp. 81-94 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper deals with approximative and form–retaining properties of the local parabolic splines of the form $S(x)=\sum\limits_j y_j B_2 (x-jh), \ (h>0),$ where $B_2$ is a normalized parabolic spline with the uniform nodes and functionals $y_j=y_j(f)$ are given for an arbitrary function $f$ defined on $\mathbb{R}$ by means of the equalities $$y_j=\frac{1}{h_1}\int\limits_{\frac{-h_1}{2}}^{\frac{h_1}{2}} f(jh+t)dt \quad (j\in\mathbb{Z}). $$ On the class $W^2_\infty$ of functions under $0$, the approximation error value is calculated exactly for the case of approximation by such splines in the uniform metrics.
Keywords: Local parabolic splines, Approximation, Mean.
@article{UMJ_2017_3_1_a7,
     author = {Elena V. Strelkova},
     title = {Approximation by local parabolic splines constructed on the basis of interpolationin the mean},
     journal = {Ural mathematical journal},
     pages = {81--94},
     year = {2017},
     volume = {3},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2017_3_1_a7/}
}
TY  - JOUR
AU  - Elena V. Strelkova
TI  - Approximation by local parabolic splines constructed on the basis of interpolationin the mean
JO  - Ural mathematical journal
PY  - 2017
SP  - 81
EP  - 94
VL  - 3
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2017_3_1_a7/
LA  - en
ID  - UMJ_2017_3_1_a7
ER  - 
%0 Journal Article
%A Elena V. Strelkova
%T Approximation by local parabolic splines constructed on the basis of interpolationin the mean
%J Ural mathematical journal
%D 2017
%P 81-94
%V 3
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2017_3_1_a7/
%G en
%F UMJ_2017_3_1_a7
Elena V. Strelkova. Approximation by local parabolic splines constructed on the basis of interpolationin the mean. Ural mathematical journal, Tome 3 (2017) no. 1, pp. 81-94. http://geodesic.mathdoc.fr/item/UMJ_2017_3_1_a7/

[1] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Spline–functions methods, Nauka, M., 1980, 355 pp. (in Russian) | MR | Zbl

[2] Piegl L., Tiller W., The NURBS Book, Springer, New York, 1997, 646 pp.

[3] Zavyalov Yu.S., “On formulas of local approximation exact on the cubic splines”, Comp. systems, 128 (1998), 75–88 (in Russian) | MR

[4] Korneychuk N.P., Splines in the approximation theory, Nauka, M., 1984, 352 pp. (in Russian) | MR

[5] Subbotin Yu.N., “Heritance of monotonisity and convexity properties under local approximation”, J. Comp. Math. and Math. Physics, 37:7 (1993), 996–1003 (in Russian) | MR

[6] Subbotin Yu.N., “Extremal problems of functional interpolation and interpolation of splines in the mean”, Trudy Steklov Math. Institute of RAS, 109, 1975, 35–60 (in Russian) | MR

[7] Subbotin Yu.N., “Extremal functional interpolation in the mean with the minimal value of the $n$-th derivative on large intervals of meaning”, Math. Zametki, 59:1 (1996), 114–132 (in Russian) | DOI | MR

[8] Subbotin Yu.N., “Extremal $L_p$-interpolation in the mean on intersecting intervals of meaning”, Izv. RAS Ser. Math., 61:1 (1997), 177–198 (in Russian) | DOI | MR | Zbl

[9] Shevaldin V.T., “Some problems of extremal interpolation in the mean for linear differential operators”, Trudy Steklov Math. Institute of RAS, 164, 1983, 203–240 (in Russian) | MR | Zbl

[10] Shevaldin V.T., “Extremal interpolation in the mean on intersecting intervals of meaning and $L$–splines”, Izv. RAS Ser. Math., 62:4 (1998), 201–224 (in Russian) | DOI | MR | Zbl