Finite nilsemigroups with modular congruence lattices
Ural mathematical journal, Tome 3 (2017) no. 1, pp. 52-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper continues the joint work [2] of the author with P. Jones. We describe all finitely generated nilsemigroups with modular congruence lattices: there are 91 countable series of such semigroups. For finitely generated nilsemigroups a simple algorithmic test to the congruence modularity is obtained.
Keywords: Semigroup, Nilsemigroup, Congruence lattice.
@article{UMJ_2017_3_1_a4,
     author = {Alexander L. Popovich},
     title = {Finite nilsemigroups with modular congruence lattices},
     journal = {Ural mathematical journal},
     pages = {52--67},
     year = {2017},
     volume = {3},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2017_3_1_a4/}
}
TY  - JOUR
AU  - Alexander L. Popovich
TI  - Finite nilsemigroups with modular congruence lattices
JO  - Ural mathematical journal
PY  - 2017
SP  - 52
EP  - 67
VL  - 3
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2017_3_1_a4/
LA  - en
ID  - UMJ_2017_3_1_a4
ER  - 
%0 Journal Article
%A Alexander L. Popovich
%T Finite nilsemigroups with modular congruence lattices
%J Ural mathematical journal
%D 2017
%P 52-67
%V 3
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2017_3_1_a4/
%G en
%F UMJ_2017_3_1_a4
Alexander L. Popovich. Finite nilsemigroups with modular congruence lattices. Ural mathematical journal, Tome 3 (2017) no. 1, pp. 52-67. http://geodesic.mathdoc.fr/item/UMJ_2017_3_1_a4/

[1] Nagy A., Jones P.R., “Permutative semigroups whose congruences form a chain”, Semigroup Forum, 69:3 (2004), 446–456 | DOI | MR | Zbl

[2] Popovich A.L., Jones P.R., “On congruence lattices of nilsemigroups”, Semigroup Forum, 2016, 1–7 | DOI

[3] Schein B.M., “Commutative semigroups where congruences form a chain”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 17 (1969), 523–527 | MR | Zbl

[4] Tamura T., “Commutative semigroups whose lattice of congruences is a chain”, Bull. Soc. Math. France, 97 (1969), 369–380 | DOI | MR | Zbl