Finite nilsemigroups with modular congruence lattices
Ural mathematical journal, Tome 3 (2017) no. 1, pp. 52-67
Cet article a éte moissonné depuis la source Math-Net.Ru
This paper continues the joint work [2] of the author with P. Jones. We describe all finitely generated nilsemigroups with modular congruence lattices: there are 91 countable series of such semigroups. For finitely generated nilsemigroups a simple algorithmic test to the congruence modularity is obtained.
Keywords:
Semigroup, Nilsemigroup, Congruence lattice.
@article{UMJ_2017_3_1_a4,
author = {Alexander L. Popovich},
title = {Finite nilsemigroups with modular congruence lattices},
journal = {Ural mathematical journal},
pages = {52--67},
year = {2017},
volume = {3},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2017_3_1_a4/}
}
Alexander L. Popovich. Finite nilsemigroups with modular congruence lattices. Ural mathematical journal, Tome 3 (2017) no. 1, pp. 52-67. http://geodesic.mathdoc.fr/item/UMJ_2017_3_1_a4/
[1] Nagy A., Jones P.R., “Permutative semigroups whose congruences form a chain”, Semigroup Forum, 69:3 (2004), 446–456 | DOI | MR | Zbl
[2] Popovich A.L., Jones P.R., “On congruence lattices of nilsemigroups”, Semigroup Forum, 2016, 1–7 | DOI
[3] Schein B.M., “Commutative semigroups where congruences form a chain”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 17 (1969), 523–527 | MR | Zbl
[4] Tamura T., “Commutative semigroups whose lattice of congruences is a chain”, Bull. Soc. Math. France, 97 (1969), 369–380 | DOI | MR | Zbl