Mots-clés : Pontriagyn maximumprinciple.
@article{UMJ_2017_3_1_a3,
author = {Mikhail I. Gusev},
title = {An algorithm for computing boundary points of reachable sets of control systems under integral constraints},
journal = {Ural mathematical journal},
pages = {44--51},
year = {2017},
volume = {3},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2017_3_1_a3/}
}
TY - JOUR AU - Mikhail I. Gusev TI - An algorithm for computing boundary points of reachable sets of control systems under integral constraints JO - Ural mathematical journal PY - 2017 SP - 44 EP - 51 VL - 3 IS - 1 UR - http://geodesic.mathdoc.fr/item/UMJ_2017_3_1_a3/ LA - en ID - UMJ_2017_3_1_a3 ER -
Mikhail I. Gusev. An algorithm for computing boundary points of reachable sets of control systems under integral constraints. Ural mathematical journal, Tome 3 (2017) no. 1, pp. 44-51. http://geodesic.mathdoc.fr/item/UMJ_2017_3_1_a3/
[1] Anan'ev B.I., “Motion correction of a statistically uncertain system under communication constraints”, Automation and Remote Control, 71:3 (2010), 367–378 | DOI | MR | Zbl
[2] Baier R., Gerdts M., Xausa I., “Approximation of Reachable Sets using Optimal Control Algorithms”, Numerical Algebra, Control and Optimization, 3:3 (2013), 519–548 | DOI | MR | Zbl
[3] Donchev A., “The Graves Theorem Revisited”, Journal of Convex Analysis, 3:1 (1996), 45–53 | MR
[4] Filippova T.F., Matviychuk O.G., “Algorithms to estimate the reachability sets of the pulse controlled systems with ellipsoidal phase constraints”, Automation and Remote Control, 72:9 (2011), 1911–1924 | DOI | MR | Zbl
[5] Guseinov K.G., Ozer O., Akyar E., Ushakov V.N., “The approximation of reachable sets of control systems with integral constraint on controls”, Nonlinear Differential Equations and Applications, 14:1–2 (2007), 57–73 | DOI | MR | Zbl
[6] Guseinov Kh.G., Nazlipinar A.S., “Attainable sets of the control system with limited resources”, Trudy Inst. Mat. i Mekh. Uro RAN, 16, no. 5, 2010, 261—268
[7] Gusev M.I., “Internal approximations of reachable sets of control systems with state constraints”, Proc. Steklov Inst. Math. (Suppl.), 287:suppl. 1 (2014), 77–92 | DOI | MR
[8] Gusev M.I., Zykov, I.V., “On extremal properties of the boundary points of reachable sets for control systems with integral constraints”, Trudy Inst. Mat. i Mekh. UrO RAN, 23, no. 1, 2017, 103–115 | DOI | MR
[9] Kostousova E.K., “On the boundedness of outer polyhedral estimates for reachable sets of linear systems”, Comput. Math. and Math. Phys., 48 (2008), 918–932 | DOI | MR | Zbl
[10] Kurzhanski A.B., Varaiya P., “Dynamic optimization for reachability problems”, J. Optim. Theory Appl., 108:2 (2001), 227–251 | DOI | MR | Zbl
[11] Kurzhanski A.B., Varaiya P., “On Ellipsoidal Techniques for Reachability Analysis. Part I. External approximations”, Optim. Methods Software, 17:2 (2002), 177–206 | DOI | MR | Zbl
[12] Kurzhanski A.B., Varaiya P., Dynamics and Control of Trajectory Tubes. Theory and Computation, Basel, 2014 | DOI | MR
[13] Lee E.B., Marcus L., Foundations of Optimal Control Theory, John Willey 'S' Sons, Inc., 1967 | MR | Zbl
[14] Lempio F., Veliov V.M., “Discrete approximations of differential inclusions”, GAMM Mitt. Ges. Angew. Math. Mech., 21 (1998), 103–135 | MR | Zbl
[15] Patsko V.S., Pyatko S.G., Fedotov A.A., “Three-dimensional reachability set for a nonlinear control system”, J. Comput. Syst. Sci. Int., 42:3 (2003), 320–328 | MR | Zbl
[16] Polyak B.T., “Convexity of the reachable set of nonlinear systems under l2 bounded controls”, Dynamics of Continuous, Discrete and Impulsive Systems. Series A: Mathematical Analysis, 11 (2004), 255–267 | MR | Zbl
[17] Sinyakov V.V., “Method for computing exterior and interior approximations to the reachability sets of bilinear differential systems”, Differential Equations, 51:8 (2015), 1097–1111 | DOI | MR | Zbl