Dispersive rarefaction wave with a large initial gradient
Ural mathematical journal, Tome 3 (2017) no. 1, pp. 33-43

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider the Cauchy problem for the Korteweg-de Vries equation with a small parameter at the highest derivative and a large gradient of the initial function. Numerical and analytical methods show that the obtained using renormalization formal asymptotics, corresponding to rarefaction waves, is an asymptotic solution of the KdV equation. The graphs of the asymptotic solutions are represented, including the case of non-monotonic initial data.
Keywords: The Korteweg-de Vries, Cauchy problem, Asymptotic behavior, Rarefaction wave.
@article{UMJ_2017_3_1_a2,
     author = {Alexander E. Elbert and Sergey V. Zakharov},
     title = {Dispersive rarefaction wave with a large initial gradient},
     journal = {Ural mathematical journal},
     pages = {33--43},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2017_3_1_a2/}
}
TY  - JOUR
AU  - Alexander E. Elbert
AU  - Sergey V. Zakharov
TI  - Dispersive rarefaction wave with a large initial gradient
JO  - Ural mathematical journal
PY  - 2017
SP  - 33
EP  - 43
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2017_3_1_a2/
LA  - en
ID  - UMJ_2017_3_1_a2
ER  - 
%0 Journal Article
%A Alexander E. Elbert
%A Sergey V. Zakharov
%T Dispersive rarefaction wave with a large initial gradient
%J Ural mathematical journal
%D 2017
%P 33-43
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2017_3_1_a2/
%G en
%F UMJ_2017_3_1_a2
Alexander E. Elbert; Sergey V. Zakharov. Dispersive rarefaction wave with a large initial gradient. Ural mathematical journal, Tome 3 (2017) no. 1, pp. 33-43. http://geodesic.mathdoc.fr/item/UMJ_2017_3_1_a2/