Automorphisms of distance-regular graph with intersection array $\{25,16,1;1,8,25\}$
Ural mathematical journal, Tome 3 (2017) no. 1, pp. 27-32

Voir la notice de l'article provenant de la source Math-Net.Ru

Makhnev and Samoilenko have found parameters of strongly regular graphs with no more than 1000 vertices, which may be neighborhoods of vertices in antipodal distance-regular graph of diameter 3 and with $\lambda=\mu$. They proposed the program of investigation vertex-symmetric antipodal distance-regular graphs of diameter 3 with $\lambda=\mu$, in which neighborhoods of vertices are strongly regular. In this paper we consider neighborhoods of vertices with parameters $(25,8,3,2)$.
Keywords: Strongly regular graph, Distance-regular graph.
@article{UMJ_2017_3_1_a1,
     author = {Konstantin S. Efimov and Alexander A. Makhnev},
     title = {Automorphisms of distance-regular graph with intersection array $\{25,16,1;1,8,25\}$},
     journal = {Ural mathematical journal},
     pages = {27--32},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2017_3_1_a1/}
}
TY  - JOUR
AU  - Konstantin S. Efimov
AU  - Alexander A. Makhnev
TI  - Automorphisms of distance-regular graph with intersection array $\{25,16,1;1,8,25\}$
JO  - Ural mathematical journal
PY  - 2017
SP  - 27
EP  - 32
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2017_3_1_a1/
LA  - en
ID  - UMJ_2017_3_1_a1
ER  - 
%0 Journal Article
%A Konstantin S. Efimov
%A Alexander A. Makhnev
%T Automorphisms of distance-regular graph with intersection array $\{25,16,1;1,8,25\}$
%J Ural mathematical journal
%D 2017
%P 27-32
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2017_3_1_a1/
%G en
%F UMJ_2017_3_1_a1
Konstantin S. Efimov; Alexander A. Makhnev. Automorphisms of distance-regular graph with intersection array $\{25,16,1;1,8,25\}$. Ural mathematical journal, Tome 3 (2017) no. 1, pp. 27-32. http://geodesic.mathdoc.fr/item/UMJ_2017_3_1_a1/