@article{UMJ_2017_3_1_a1,
author = {Konstantin S. Efimov and Alexander A. Makhnev},
title = {Automorphisms of distance-regular graph with intersection array $\{25,16,1;1,8,25\}$},
journal = {Ural mathematical journal},
pages = {27--32},
year = {2017},
volume = {3},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2017_3_1_a1/}
}
TY - JOUR
AU - Konstantin S. Efimov
AU - Alexander A. Makhnev
TI - Automorphisms of distance-regular graph with intersection array $\{25,16,1;1,8,25\}$
JO - Ural mathematical journal
PY - 2017
SP - 27
EP - 32
VL - 3
IS - 1
UR - http://geodesic.mathdoc.fr/item/UMJ_2017_3_1_a1/
LA - en
ID - UMJ_2017_3_1_a1
ER -
Konstantin S. Efimov; Alexander A. Makhnev. Automorphisms of distance-regular graph with intersection array $\{25,16,1;1,8,25\}$. Ural mathematical journal, Tome 3 (2017) no. 1, pp. 27-32. http://geodesic.mathdoc.fr/item/UMJ_2017_3_1_a1/
[1] Makhnev A.A., Samoilenko M.S., “Automorphisms of distance-regular graph with intersection array $\{121,100,1;1,20,121\}$”, Proc. of the 47-th International Youth School-conference (Ekaterinburg, Russia, 2016), S21–S25 | MR
[2] Isakova M.M., Makhnev A.A., Tokbaeva A.A., “Automorphisms of distance-regular graph with intersection array $\{64,42,1;1,21,64\}$”, Intern. Conf. on applied Math. and Physics (Nalchik, 2017), 245—246 | MR
[3] Belousov I.N., “On automorphisms of distance-regular graph with intersection array $\{81,64,1;1,16,81\}$”, Proceedings of Intern. Russian – Chinese Conf. (Nalchik, 2015), 31–32 | MR
[4] Makhnev A.A., Isakova M.M., Tokbaeva A.A., “On graphs in which neighborhoods of vertices are strongly regular with parameters (85,14,3,2) or (325,54,3,10)”, Trudy Inst. Mat. i Mekh. UrO RAN, 22, no. 3, 2016, 137–143 | DOI | MR
[5] Ageev P.S., Makhnev A.A., “On automorphisms of distance-regular graphs with intersection array $\{99,84,1;1,14,99\}$”, Doklady Mathematics, 90:2 (2014), 525–528 | DOI | MR | Zbl
[6] Makhnev A.A., Paduchikh D.V., “Distance-regular graphs, in which neighbourhoods of vertices are strongly regular with the second eigenvalue at most 3”, Doklady Mathematics, 92:2 (2015), S568–S571 | DOI | MR
[7] Brouwer A.E., Cohen A.M., Neumaier A., Distance-Regular Graphs, Springer-Verlag, New York, 1989, 495 pp. | MR | Zbl
[8] Gavrilyuk A.L., Makhnev A.A., “On automorphisms of distance-regular graph with the intersection array $\{56,45,1;1,9,56\}$”, Doklady Mathematics, 81:3 (2010), S439–S442 | DOI | MR
[9] Makhnev A.A., Paduchikh D.V., Tsiovkina L.Y., “Edge-symmetric distance-regular covers of cliques with $\lambda=\mu$”, Trudy Inst. Mat. i Mekh. UrO RAN, 19, no. 2, 2013, 237–246 | MR
[10] Zavarnitsin A.V., “Finite simple groups with narrow prime spectrum”, Siberian electr. Math. Reports, 6 (2009), S1–S12. | MR