A numerical method for solving linear-quadratic control problems with constraints
Ural mathematical journal, Tome 2 (2016) no. 2, pp. 108-116

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the optimal control problem for a linear system with integrally constrained control function. We study the problem of minimization of a linear terminal cost with terminal constraints given by a set of linear inequalities. For the solution of this problem we propose two-stage numerical algorithm, which is based on construction of the reachable set of the system. At the first stage we find a solution to finite-dimensional optimization problem with a linear objective function and linear and quadratic constraints. At the second stage we solve a standard linear-quadratic control problem, which admits a simple and effective solution.
Keywords: Optimal control, Reachable set, Integral constraints, Convex programming, Semi-infinite linear programming.
@article{UMJ_2016_2_2_a8,
     author = {Mikhail I. Gusev and Igor V. Zykov},
     title = {A numerical method for solving linear-quadratic control problems with constraints},
     journal = {Ural mathematical journal},
     pages = {108--116},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2016_2_2_a8/}
}
TY  - JOUR
AU  - Mikhail I. Gusev
AU  - Igor V. Zykov
TI  - A numerical method for solving linear-quadratic control problems with constraints
JO  - Ural mathematical journal
PY  - 2016
SP  - 108
EP  - 116
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2016_2_2_a8/
LA  - en
ID  - UMJ_2016_2_2_a8
ER  - 
%0 Journal Article
%A Mikhail I. Gusev
%A Igor V. Zykov
%T A numerical method for solving linear-quadratic control problems with constraints
%J Ural mathematical journal
%D 2016
%P 108-116
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2016_2_2_a8/
%G en
%F UMJ_2016_2_2_a8
Mikhail I. Gusev; Igor V. Zykov. A numerical method for solving linear-quadratic control problems with constraints. Ural mathematical journal, Tome 2 (2016) no. 2, pp. 108-116. http://geodesic.mathdoc.fr/item/UMJ_2016_2_2_a8/