Optimal multiattribute screening
Ural mathematical journal, Tome 2 (2016) no. 2, pp. 87-107

Voir la notice de l'article provenant de la source Math-Net.Ru

We provide a technique for constructing optimal multiattribute screening contracts in a general setting with one-dimensional types based on necessary optimality conditions. Our approach allows for type-dependent participation constraints and arbitrary risk proles. As an example we discuss optimal insurance contracts.
Keywords: Asymmetric Information, Incentive Contracting, Maximum Principle, Nonlinear Pricing.
@article{UMJ_2016_2_2_a7,
     author = {Thomas A. Weber},
     title = {Optimal multiattribute screening},
     journal = {Ural mathematical journal},
     pages = {87--107},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2016_2_2_a7/}
}
TY  - JOUR
AU  - Thomas A. Weber
TI  - Optimal multiattribute screening
JO  - Ural mathematical journal
PY  - 2016
SP  - 87
EP  - 107
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2016_2_2_a7/
LA  - en
ID  - UMJ_2016_2_2_a7
ER  - 
%0 Journal Article
%A Thomas A. Weber
%T Optimal multiattribute screening
%J Ural mathematical journal
%D 2016
%P 87-107
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2016_2_2_a7/
%G en
%F UMJ_2016_2_2_a7
Thomas A. Weber. Optimal multiattribute screening. Ural mathematical journal, Tome 2 (2016) no. 2, pp. 87-107. http://geodesic.mathdoc.fr/item/UMJ_2016_2_2_a7/