@article{UMJ_2016_2_2_a7,
author = {Thomas A. Weber},
title = {Optimal multiattribute screening},
journal = {Ural mathematical journal},
pages = {87--107},
year = {2016},
volume = {2},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2016_2_2_a7/}
}
Thomas A. Weber. Optimal multiattribute screening. Ural mathematical journal, Tome 2 (2016) no. 2, pp. 87-107. http://geodesic.mathdoc.fr/item/UMJ_2016_2_2_a7/
[1] Mirrlees J.A., “An exploration in the theory of optimal income taxation”, Rev. Econ. Stud, 38:2 (1971), 175–208
[2] Baron D.P., Myerson R.B., “Regulating a monopolist with unknown costs”, Econometrica, 50:4 (1982), 911–930
[3] Mirman L.J., Sibley D., “Optimal nonlinear prices for multiproduct monopolies”, Bell J. Econ., 11:2 (1980), 659–670
[4] Mussa M., Rosen S., “Monopoly and product quality”, J. Econ. Theory, 18:2 (1978), 301–317
[5] Guesnerie R., Laont J.-J., “A complete solution to a class of principal-agent problems with an application to the control of a self-managed firm”, J. Public Econ, 25:3 (1984), 329–369
[6] Matthews S., Moore J., “Monopoly provision of quality and warranties: an exploration in the theory of multidimensional screening”, Econometrica, 55:2 (1987), 441–467
[7] Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F., The mathematical theory of optimal processes., Wiley Interscience, New York, 1962, 360 pp.
[8] Aseev S., “Methods of regularization in nonsmooth problems of dynamic optimization”, J. Math. Sci, 94:3 (1999), 1366–1393
[9] Hicks J.R., Value and capital, Clarendon Press, Oxford, 1939, 331 pp.
[10] Weber T.A., “Hicksian welfare measures and the normative endowment effect”, Am. Econ. J.: Microecon, 2:4 (2010), 171–194
[11] Weber T.A., Screening with externalities, Working Paper, Stanford University, 2005
[12] Gibbard A., “Manipulation of voting schemes: a general result”, Econometrica, 41:4 (1973), 587–601
[13] Myerson R.B., “Incentive compatibility and the bargaining problem”, Econometrica, 47:1 (1979), 61–74
[14] Rudin W., Principles of mathematical analysis, 3rd, McGraw-Hill, New York, 1976, 342 pp.
[15] Jayne J.E., Rogers C.A., Selectors, Princeton University Press, Princeton, 2002, 167 pp.
[16] Laffont, J.-J., The economics of uncertainty and information, MIT Press, Cambridge, 1989, 289 pp.
[17] Stiglitz, J.E., “Monopoly, non-linear pricing and imperfect information: the insurance market”, Rev. Econ. Stud., 44:3 (1977), 407–430
[18] Weber T.A., “Global optimization on an interval”, J. Optimiz. Theory App. Forthcoming, 172:2 (2017), 684–705 | DOI
[19] Arutyunov A.V., Optimality conditions: abnormal and degenerate problems, Kluwer, Dordrecht, 2000, 299 pp.
[20] Weber T.A., Optimal control theory with applications in economics, (Preface by A.V. Kryazhimskiy), MIT Press, Cambridge, 2011, 360 pp.
[21] Gelfand I.M., Fomin S.V., Calculus of variations, Prentice-Hall, Englewood-Clis, 1963, 240 pp.
[22] Kolmogorov A.N., Fomin S.V., Elements of the theory of functions and functional analysis, parts I, Graylock Press, Rochester, 1957, 288 pp.
[23] Megginson R.E., An introduction to Banach space theory, Springer, New York, 1998, 596 pp.
[24] Dunford N., Schwartz J.T., Linear operators, part I: general theory., Wiley Interscience, New York, 1958, 858 pp.
[25] Milyutin A.A., Osmolovskii N.P., Calculus of variations and optimal control, American Mathematical Society, Providence, 1998, 372 pp.
[26] Zorich V.A., Mathematical analysis, v. I, Springer, New York, 2004, 574 pp.
[27] Kirillov A.A., Gvishiani A.D., Theorems and problems in functional analysis, Springer, New York, 1982, 347 pp.
[28] Taylor A.E., General theory of functions and integration, Blaisdell Publishing, New York, 1965, 437 pp.
[29] Giaquinta, M., Modica, G., Souc̆ek, J., Cartesian currents in the calculus of variations, v. I, Springer, New York, 1998, 711 pp.
[30] Ries F., Sz.-Nagy B., Functional analysis, Ungar Publishing, New York, 1955, 491 pp.
[31] Schechter M., Principles of functional analysis, 2nd, American Mathematical Society, Providence, 2002, 425 pp.