Parallel algorithm for calculating general equilibrium in multiregion economic growth models
Ural mathematical journal, Tome 2 (2016) no. 2, pp. 45-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We develop and analyze a parallel algorithm for computing a solution in a multiregion dynamic general equilibrium model. The algorithm is based on an iterative method of the Gauss-Seidel type and exploits a special block structure of the model. Calculation of prices and input-output ratios in production for different time steps is carried out in parallel. We implement the parallel algorithm using the OpenMP interface for systems with shared memory. The effciency of the algorithm is studied with the numbers of cores varying in the full range from one to the number of time steps of the model.
Keywords: Computable general equilibrium, Economic growth, Iterative methods, High-performance computing, OpenMP.
@article{UMJ_2016_2_2_a4,
     author = {Nikolai B. Melnikov and Arseniy P. Gruzdev and Michael G. Dalton and Brian C. O'Neill},
     title = {Parallel algorithm for calculating general equilibrium in multiregion economic growth models},
     journal = {Ural mathematical journal},
     pages = {45--57},
     year = {2016},
     volume = {2},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2016_2_2_a4/}
}
TY  - JOUR
AU  - Nikolai B. Melnikov
AU  - Arseniy P. Gruzdev
AU  - Michael G. Dalton
AU  - Brian C. O'Neill
TI  - Parallel algorithm for calculating general equilibrium in multiregion economic growth models
JO  - Ural mathematical journal
PY  - 2016
SP  - 45
EP  - 57
VL  - 2
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2016_2_2_a4/
LA  - en
ID  - UMJ_2016_2_2_a4
ER  - 
%0 Journal Article
%A Nikolai B. Melnikov
%A Arseniy P. Gruzdev
%A Michael G. Dalton
%A Brian C. O'Neill
%T Parallel algorithm for calculating general equilibrium in multiregion economic growth models
%J Ural mathematical journal
%D 2016
%P 45-57
%V 2
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2016_2_2_a4/
%G en
%F UMJ_2016_2_2_a4
Nikolai B. Melnikov; Arseniy P. Gruzdev; Michael G. Dalton; Brian C. O'Neill. Parallel algorithm for calculating general equilibrium in multiregion economic growth models. Ural mathematical journal, Tome 2 (2016) no. 2, pp. 45-57. http://geodesic.mathdoc.fr/item/UMJ_2016_2_2_a4/

[1] Kelley C., Iterative Methods for Linear and Nonlinear Equations., SIAM, Philadelphia, 1995

[2] Melnikov N., Gruzdev A., Dalton M., O'Neill B., “Parallel algorithm for solving large-scale dynamic general equilibrium models”, Russian Supercomputing Days, 2015, 84–95

[3] Fair R., Taylor J., “Solution and maximum likelihood estimation of dynamic nonlinear rational expectations models”, Econometrica, 51 (1983), 1169–1185

[4] Dalton M., O'Neill B., Prskawetz A., Jiang L., Pitkin J., “Population aging and future carbon emissions in the United States”, Energy economics, 30 (2008), 642–675

[5] Melnikov N., O'Neill B., Dalton M., “Accounting for the household heterogeneity in dynamic general equilibrium models”, Energy economics, 34 (2012), 1475–1483

[6] Pernice M., Walker H., “NITSOL: a Newton iterative solver for nonlinear systems”, SIAM J. Sci. Comput, 19 (1998), 302–318

[7] O'Neill B., Dalton D., Fuchs R., Jiang L., Pachauri S., Zigova K., “Global demographic trends and future carbon emissions”, Proc. Natl. Acad. Sci. U.S.A., 107 (2010), 17521–17526

[8] Ren X., Weitzel M., O'Neill B.C., Lawrence P., Meiyappan P., Levis S., Balistreri E.J., Dalton M., “Avoided economic impacts of climate change on agriculture: integrating a land surface model (CLM) with a global economic model (iPETS)”, Climatic Change, 2016, 1–15 | DOI

[9] Stokey N., Lucas R. and Prescott E., Recursive Methods in Economic Dynamics, Cambridge MA, Harvard University Press, 1989, 608 pp.

[10] Armington P., “A theory of demand for products distinguished by place of production”, IMF Staff Papers, 16 (1969), 170-201

[11] Eisenstat S., Walker H., “Globally convergent inexact Newton methods”, SIAM J. Optimization, 4 (1994), 393–422

[12] Sadovnichy V., Tikhonravov A., Voevodin Vl., Opanasenko V., “Lomonosov: Supercomputing at Moscow State University”, In Contemporary High Performance Computing: From Petascale toward Exascale, Chapman Hall/CRC Computational Science, CRC Press, Boca Raton, 2013, 283–307

[13] Yellowstone: IBM iDataPlex System (Climate Simulation Laboratory), , Computational and Information Systems Laboratory, National Center for Atmospheric Research, Boulder, CO, 2012 http://n2t.net/ark:/85065/d7wd3xhc

[14] Basic Linear Algebra Subprograms, , 2016 (Accessed 10 October 2016) http://www.netlib.org/blas/

[15] Linear Algebra Package, , 2016 (Accessed 10 October 2016) http://www.netlib.org/lapack/