@article{UMJ_2016_2_2_a4,
author = {Nikolai B. Melnikov and Arseniy P. Gruzdev and Michael G. Dalton and Brian C. O'Neill},
title = {Parallel algorithm for calculating general equilibrium in multiregion economic growth models},
journal = {Ural mathematical journal},
pages = {45--57},
year = {2016},
volume = {2},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2016_2_2_a4/}
}
TY - JOUR AU - Nikolai B. Melnikov AU - Arseniy P. Gruzdev AU - Michael G. Dalton AU - Brian C. O'Neill TI - Parallel algorithm for calculating general equilibrium in multiregion economic growth models JO - Ural mathematical journal PY - 2016 SP - 45 EP - 57 VL - 2 IS - 2 UR - http://geodesic.mathdoc.fr/item/UMJ_2016_2_2_a4/ LA - en ID - UMJ_2016_2_2_a4 ER -
%0 Journal Article %A Nikolai B. Melnikov %A Arseniy P. Gruzdev %A Michael G. Dalton %A Brian C. O'Neill %T Parallel algorithm for calculating general equilibrium in multiregion economic growth models %J Ural mathematical journal %D 2016 %P 45-57 %V 2 %N 2 %U http://geodesic.mathdoc.fr/item/UMJ_2016_2_2_a4/ %G en %F UMJ_2016_2_2_a4
Nikolai B. Melnikov; Arseniy P. Gruzdev; Michael G. Dalton; Brian C. O'Neill. Parallel algorithm for calculating general equilibrium in multiregion economic growth models. Ural mathematical journal, Tome 2 (2016) no. 2, pp. 45-57. http://geodesic.mathdoc.fr/item/UMJ_2016_2_2_a4/
[1] Kelley C., Iterative Methods for Linear and Nonlinear Equations., SIAM, Philadelphia, 1995
[2] Melnikov N., Gruzdev A., Dalton M., O'Neill B., “Parallel algorithm for solving large-scale dynamic general equilibrium models”, Russian Supercomputing Days, 2015, 84–95
[3] Fair R., Taylor J., “Solution and maximum likelihood estimation of dynamic nonlinear rational expectations models”, Econometrica, 51 (1983), 1169–1185
[4] Dalton M., O'Neill B., Prskawetz A., Jiang L., Pitkin J., “Population aging and future carbon emissions in the United States”, Energy economics, 30 (2008), 642–675
[5] Melnikov N., O'Neill B., Dalton M., “Accounting for the household heterogeneity in dynamic general equilibrium models”, Energy economics, 34 (2012), 1475–1483
[6] Pernice M., Walker H., “NITSOL: a Newton iterative solver for nonlinear systems”, SIAM J. Sci. Comput, 19 (1998), 302–318
[7] O'Neill B., Dalton D., Fuchs R., Jiang L., Pachauri S., Zigova K., “Global demographic trends and future carbon emissions”, Proc. Natl. Acad. Sci. U.S.A., 107 (2010), 17521–17526
[8] Ren X., Weitzel M., O'Neill B.C., Lawrence P., Meiyappan P., Levis S., Balistreri E.J., Dalton M., “Avoided economic impacts of climate change on agriculture: integrating a land surface model (CLM) with a global economic model (iPETS)”, Climatic Change, 2016, 1–15 | DOI
[9] Stokey N., Lucas R. and Prescott E., Recursive Methods in Economic Dynamics, Cambridge MA, Harvard University Press, 1989, 608 pp.
[10] Armington P., “A theory of demand for products distinguished by place of production”, IMF Staff Papers, 16 (1969), 170-201
[11] Eisenstat S., Walker H., “Globally convergent inexact Newton methods”, SIAM J. Optimization, 4 (1994), 393–422
[12] Sadovnichy V., Tikhonravov A., Voevodin Vl., Opanasenko V., “Lomonosov: Supercomputing at Moscow State University”, In Contemporary High Performance Computing: From Petascale toward Exascale, Chapman Hall/CRC Computational Science, CRC Press, Boca Raton, 2013, 283–307
[13] Yellowstone: IBM iDataPlex System (Climate Simulation Laboratory), , Computational and Information Systems Laboratory, National Center for Atmospheric Research, Boulder, CO, 2012 http://n2t.net/ark:/85065/d7wd3xhc
[14] Basic Linear Algebra Subprograms, , 2016 (Accessed 10 October 2016) http://www.netlib.org/blas/
[15] Linear Algebra Package, , 2016 (Accessed 10 October 2016) http://www.netlib.org/lapack/