Group classification for a general nonlinear model of option pricing
Ural mathematical journal, Tome 2 (2016) no. 2, pp. 37-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a family of equations with two free functional parameters containing the classical Black-Scholes model, Schonbucher-Wilmott model, Sircar-Papanicolaou equation for option pricing as partial cases. A five-dimensional group of equivalence transformations is calculated for that family. That group is applied to a search for specifications' parameters specifications corresponding to additional symmetries of the equation. Seven pairs of specifications are found.
Keywords: Nonlinear partial differential equation, Group analysis, Group of equivalency transformations, Nonlinear Black-Scholes equation, Pricing options, Dynamic hedging, Feedback effects of hedging.
Mots-clés : Group classiffcation
@article{UMJ_2016_2_2_a3,
     author = {Vladimir E. Fedorov and Mikhail M. Dyshaev},
     title = {Group classification for a general nonlinear model of option pricing},
     journal = {Ural mathematical journal},
     pages = {37--44},
     year = {2016},
     volume = {2},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2016_2_2_a3/}
}
TY  - JOUR
AU  - Vladimir E. Fedorov
AU  - Mikhail M. Dyshaev
TI  - Group classification for a general nonlinear model of option pricing
JO  - Ural mathematical journal
PY  - 2016
SP  - 37
EP  - 44
VL  - 2
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2016_2_2_a3/
LA  - en
ID  - UMJ_2016_2_2_a3
ER  - 
%0 Journal Article
%A Vladimir E. Fedorov
%A Mikhail M. Dyshaev
%T Group classification for a general nonlinear model of option pricing
%J Ural mathematical journal
%D 2016
%P 37-44
%V 2
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2016_2_2_a3/
%G en
%F UMJ_2016_2_2_a3
Vladimir E. Fedorov; Mikhail M. Dyshaev. Group classification for a general nonlinear model of option pricing. Ural mathematical journal, Tome 2 (2016) no. 2, pp. 37-44. http://geodesic.mathdoc.fr/item/UMJ_2016_2_2_a3/

[1] Sircar K.R., Papanicolaou G., “General Black-Scholes models accounting for increased market volatility from hedging strategies”, Appl. Math. Finance, 5 (1998), 45–82

[2] Black F., Scholes M., “The pricing of options and corporate liabilities”, J. of Political Economy, 81 (1973), 637–659

[3] Frey R., Stremme A., “Market volatility and feedback effects from dynamic hedging”, Math. Finance, 7:4 (1997), 351–374

[4] Frey R., “Perfect option replication for a large trader”, Finance and Stochastics, 2 (1998), 115–148

[5] Jarrow R.A., “Derivative securities markets, market manipulation and option pricing theory”, J. of Financial and Quantitative Analysis, 29 (1994), 241–261

[6] Schönbucher P., Wilmott P., “The feedback-effect of hedging in illiquid markets”, SIAM J. on Appl. Math., 61 (2000), 232–272

[7] Ovsyannikov L.V., Group analysis of differential equations, Academic press, New York, 1982

[8] Chirkunov Yu.A., Khabirov S.V., Elements of symmetry analysis for differential equations of continuum mechanics, Novosibirsk State Technical University, Novosibirsk, 2012, 659 pp. (in Russian)

[9] Gazizov R.K., Ibragimov N.H., “Lie symmetry analysis of differential equations in finance”, Nonlinear Dynamics, 17 (1998), 387–407

[10] Bordag L.A., Chmakova A.Y., “Explicit solutions for a nonlinear model of financial derivatives”, Int. J. of Theoretical and Applied Finance, 10:1 (2007), 1–21

[11] Bordag L.A., “On option-valuation in illiquid markets: invariant solutions to a nonlinear mode”, Mathematical Control Theory and Finance, eds. A. Sarychev, A. Shiryaev, M. Guerra and M. R. Grossinho, Springer, Berlin–Heidelberg, 2008, 71–94 | DOI

[12] Mikaelyan A., Analytical study of the Schönbucher-Wilmott model of the feedback effect in illiquid markets. Master’s Thesis in Financial Mathematics, Technical report, IDE0913, Halmstad University, Halmstad, 2009, viii+67 pp.

[13] Bordag L.A., Mikaelyan A., “Models of self-financing hedging strategies in illiquid markets: symmetry reductions and exact solutions”, Journal Letters in Mathematical Physics, 96:1–3 (2011), 191–207