Group classification for a general nonlinear model of option pricing
Ural mathematical journal, Tome 2 (2016) no. 2, pp. 37-44

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a family of equations with two free functional parameters containing the classical Black-Scholes model, Schonbucher-Wilmott model, Sircar-Papanicolaou equation for option pricing as partial cases. A five-dimensional group of equivalence transformations is calculated for that family. That group is applied to a search for specifications' parameters specifications corresponding to additional symmetries of the equation. Seven pairs of specifications are found.
Keywords: Nonlinear partial differential equation, Group analysis, Group of equivalency transformations, Nonlinear Black-Scholes equation, Pricing options, Dynamic hedging, Feedback effects of hedging.
Mots-clés : Group classiffcation
@article{UMJ_2016_2_2_a3,
     author = {Vladimir E. Fedorov and Mikhail M. Dyshaev},
     title = {Group classification for a general nonlinear model of option pricing},
     journal = {Ural mathematical journal},
     pages = {37--44},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2016_2_2_a3/}
}
TY  - JOUR
AU  - Vladimir E. Fedorov
AU  - Mikhail M. Dyshaev
TI  - Group classification for a general nonlinear model of option pricing
JO  - Ural mathematical journal
PY  - 2016
SP  - 37
EP  - 44
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2016_2_2_a3/
LA  - en
ID  - UMJ_2016_2_2_a3
ER  - 
%0 Journal Article
%A Vladimir E. Fedorov
%A Mikhail M. Dyshaev
%T Group classification for a general nonlinear model of option pricing
%J Ural mathematical journal
%D 2016
%P 37-44
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2016_2_2_a3/
%G en
%F UMJ_2016_2_2_a3
Vladimir E. Fedorov; Mikhail M. Dyshaev. Group classification for a general nonlinear model of option pricing. Ural mathematical journal, Tome 2 (2016) no. 2, pp. 37-44. http://geodesic.mathdoc.fr/item/UMJ_2016_2_2_a3/