Impulse-sliding regimes in systems with delay
Ural mathematical journal, Tome 2 (2016) no. 2, pp. 141-146 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to the formalization of a concept of impulse-sliding regimes generated by positional impulse controls for systems with delay. We define the notion of impulse-sliding trajectory as a limit of a sequence of Euler polygonal lines generated by a discrete approximation of the impulse position control. The equations describing the trajectory of impulse-sliding regime are received.
Keywords: Impulse position control, Systems with delay, Impulse-sliding regime
Mots-clés : Euler polygonal lines.
@article{UMJ_2016_2_2_a11,
     author = {Alexander N. Sesekin and Natalya I. Zhelonkina},
     title = {Impulse-sliding regimes in systems with delay},
     journal = {Ural mathematical journal},
     pages = {141--146},
     year = {2016},
     volume = {2},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2016_2_2_a11/}
}
TY  - JOUR
AU  - Alexander N. Sesekin
AU  - Natalya I. Zhelonkina
TI  - Impulse-sliding regimes in systems with delay
JO  - Ural mathematical journal
PY  - 2016
SP  - 141
EP  - 146
VL  - 2
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2016_2_2_a11/
LA  - en
ID  - UMJ_2016_2_2_a11
ER  - 
%0 Journal Article
%A Alexander N. Sesekin
%A Natalya I. Zhelonkina
%T Impulse-sliding regimes in systems with delay
%J Ural mathematical journal
%D 2016
%P 141-146
%V 2
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2016_2_2_a11/
%G en
%F UMJ_2016_2_2_a11
Alexander N. Sesekin; Natalya I. Zhelonkina. Impulse-sliding regimes in systems with delay. Ural mathematical journal, Tome 2 (2016) no. 2, pp. 141-146. http://geodesic.mathdoc.fr/item/UMJ_2016_2_2_a11/

[1] Zavalishchin S.T., Sesekin A.N., “Impulse-sliding regimes of nonlinear dynamic systems”, Differ. Equations, 19:5 (1983), 562–571 (in Russian)

[2] Finogenko I.A., Ponomarev D.V., “On differential inclusions with positional discontinuous and pulse controls”, Trudy Inst. Mat. i Mekh. UrO RAN, 19:1 (2013), 284–299 (in Russian) | MR

[3] Sesekin A.N., Nepp A.N., “Impulse position control algorithms for nonlinear systems”, AIP Conference Proceeding, 1690 (2015), 040002-1–6

[4] Andreeva I.Yu., Sesekin A.N., “Degenerate linear-quadratic optimization with time delay”, Autom. Remote Control, 58, part 1:7 (1997), 1101–1109

[5] Fetisova Yu.V., Sesekin A.N., “Discontinuous solutions of differential equations with time delay”, Wseas transactions on systems, 4:5 (2005), 487–492

[6] Zavalishchin S.T, Sesekin A.N., Dynamic impulse systems: theory and applications, Kluwer Academic Publishers, Dolrbrecht, 1997, 256 pp.

[7] Sesekin A.N., “Dynamic systems with nonlinear impulse structure”, Proc. Steklov Inst. Math. (Suppl.), 2000no. , suppl. 2, S158–S172

[8] Cartan H., Formes differentielles Calcul differentiel, Hermann, Paris, 1997

[9] Lukojanov N.Yu., Functional equations of Hamilton-Jacobi and control tasks with hereditary information, Ural Federal University, Ekaterinburg, 2011, 243 pp. (in Russian)

[10] Bellman R., Cooke K.L., Differential-difference equations, Academik Press, New York–London, 1963

[11] Filippov A.F., “The existence of solutions of generalized differential equations”, Math. Notes, 10:3 (1971), 307–313