An application of motion correction methods to the alignment problem in navigation
Ural mathematical journal, Tome 2 (2016) no. 2, pp. 16-26 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we apply some motion correction methods to the alignment problem in navigation. This problem consists in matching two coordinate systems having the common origins. As a rule, one of the systems named as basic coordinate system is located at a ship or airplane. The dependent coordinate system belongs to another object (e.g. missile) that starts from the ship. The problem is considered with incomplete information on state coordinates which can be measured with disturbances without statistical description.
Keywords: Alignment problem, Incomplete information, Set-membership descriptionof uncertainty.
Mots-clés : Motion correction
@article{UMJ_2016_2_2_a1,
     author = {Boris I. Ananyev},
     title = {An application of motion correction methods to the alignment problem in navigation},
     journal = {Ural mathematical journal},
     pages = {16--26},
     year = {2016},
     volume = {2},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2016_2_2_a1/}
}
TY  - JOUR
AU  - Boris I. Ananyev
TI  - An application of motion correction methods to the alignment problem in navigation
JO  - Ural mathematical journal
PY  - 2016
SP  - 16
EP  - 26
VL  - 2
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UMJ_2016_2_2_a1/
LA  - en
ID  - UMJ_2016_2_2_a1
ER  - 
%0 Journal Article
%A Boris I. Ananyev
%T An application of motion correction methods to the alignment problem in navigation
%J Ural mathematical journal
%D 2016
%P 16-26
%V 2
%N 2
%U http://geodesic.mathdoc.fr/item/UMJ_2016_2_2_a1/
%G en
%F UMJ_2016_2_2_a1
Boris I. Ananyev. An application of motion correction methods to the alignment problem in navigation. Ural mathematical journal, Tome 2 (2016) no. 2, pp. 16-26. http://geodesic.mathdoc.fr/item/UMJ_2016_2_2_a1/

[1] Lipton A. H., Alignment of Inertial Systems on a Moving Base, NASA, Washington D.C., 1967, 178 pp.

[2] Boguslavski I.A., Applied Problems of Filtering and Control, Nauka, M., 1983, 314 pp. (in Russian)

[3] Bromberg P.V., The Theory of Inertial Navigation Systems, Nauka, M., 1979, 245 pp. (in Russian)

[4] Klimov D.M., Inertial Navigation on the Sea, Nauka, M., 1984, 211 pp. (in Russian)

[5] Parusnikov N.A., Morozov V.M, Borzov V.I., Correction Problem in Inertial Navigation, MGU, M., 1982, 256 pp. (in Russian)

[6] Bachshiyan B.Ts., Nazirov R.R., Eliyasberg P.E., Determination a nd Correction of Motion, Nauka, M., 1980, 402 pp. (in Russian)

[7] Kurzhanski A.B., Control and Observation under Conditions of Uncertainty, Nauka, M., 1977, 392 pp. (in Russian)

[8] Krasovskii N.N., Subbotin A.I., Game-Theoretical Control Problems, Springer-Verlag, New York, 1988, 517 pp.

[9] Ananyev B.I., Gredasova N.V., “The Alignment Problem of Inertial Systems and Motion Correction Procedure”, Bulletin of Buryatian State University, 2011, no. 9, 203–208 old.bsu.ru/content/pages2/1074/2011/AnanevBI.pdf (in Russian)

[10] Liptser R.Sh., Shiryayev A.N., Statistics of Random Processes. V.1 General Theory. V.2 Applications, Springer-Verlag, New York, 2000