On the structure of singular set of a piecewise smooth minimax solution of Hamilton-Jacobi-Bellman equation
Ural mathematical journal, Tome 2 (2016) no. 1, pp. 58-68 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The properties of a minimax piecewise smooth solution of the Hamilton-Jacobi-Bellman equation are studied. We get a generalization of the nesessary and sufficient conditions for the points of nondifferentiability (singularity) of the minimax solution and the Rankine-Hugoniot condition. We describe the dimensions of smooth manifolds containing in the singular set of the piecewise smooth solution in terms of state characteristics crossing on this singular set. New structural properties of the singular set are obtained for the case of the Hamiltonian depending only on the impulse variable.
Keywords: Hamilton-Jacobi-Bellman equation, Minimax solution, Singular set, Piecewise smooth solution, Tangent subspace, Rankine-Hugoniot condition.
@article{UMJ_2016_2_1_a5,
     author = {Aleksei S. Rodin},
     title = {On the structure of singular set of a piecewise smooth minimax solution of {Hamilton-Jacobi-Bellman} equation},
     journal = {Ural mathematical journal},
     pages = {58--68},
     year = {2016},
     volume = {2},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2016_2_1_a5/}
}
TY  - JOUR
AU  - Aleksei S. Rodin
TI  - On the structure of singular set of a piecewise smooth minimax solution of Hamilton-Jacobi-Bellman equation
JO  - Ural mathematical journal
PY  - 2016
SP  - 58
EP  - 68
VL  - 2
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2016_2_1_a5/
LA  - en
ID  - UMJ_2016_2_1_a5
ER  - 
%0 Journal Article
%A Aleksei S. Rodin
%T On the structure of singular set of a piecewise smooth minimax solution of Hamilton-Jacobi-Bellman equation
%J Ural mathematical journal
%D 2016
%P 58-68
%V 2
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2016_2_1_a5/
%G en
%F UMJ_2016_2_1_a5
Aleksei S. Rodin. On the structure of singular set of a piecewise smooth minimax solution of Hamilton-Jacobi-Bellman equation. Ural mathematical journal, Tome 2 (2016) no. 1, pp. 58-68. http://geodesic.mathdoc.fr/item/UMJ_2016_2_1_a5/

[1] Bellman R., Dynamic programming, Princeton Univ. Press, Princeton, 1957, 392 pp.

[2] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V. and Mishchenko E.F., The mathematical theory of optimal processes, Wiley, New York–London, 1962, 360 pp.

[3] Krasovskii N.N., Theory of motion control, Nauka, Moscow, 1968, 476 pp. (in Russian)

[4] Subbotina N.N., Kolpakova E.A., Tokmantsev T.B. and Shagalova L.G., The method of characteristics for Hamilton–Jacobi–Bellman equations, RIO UrO RAN, Ekaterinburg, 2013, 244 pp. (in Russian)

[5] Kolpakova E.A., “A generalized method of characteristics in the theory of Hamilton–Jacobi equations and conservation laws”, Trudy Inst. Mat. i Mekh. UrO RAN, 16:5 (2010), 95–102 (in Russian)

[6] Melikyan A.A., Generalized characteristics of first order PDEs: applications in optimal control and differential games, Birkhauser, Boston, 1998

[7] Cannarsa P., Sinestrari C., Semiconcave functions, Hamilton-Jacobi equations and optimal control, Progress in Nonlinear Differential Equations and Their Applications, Birkhauser Basel, Boston, 2004, 304 pp. | DOI

[8] Petrovskii I.G., Lectures on the theory of ordinary differential equations, Mosk. Gos. Univ., Moscow, 1984, 296 pp. (in Russian)

[9] Rockafellar R., Convex analysis, Princeton Univ. Press, Princeton, 1970, 470 pp.

[10] Subbotin A.I., Generalized solutions of first-order PDEs. The dynamical optimization perspective., Birkhauser, New York, 1995, 336 pp. | DOI

[11] Crandall M.G. and Lions P.L., “Viscosity solutions of Hamilton-Jacobi equations”, Trans. Amer. Math. Soc, 277:1 (1983), 1–42

[12] Subbotina N.N. and Kolpakova E.A., “On the structure of locally Lipschitz minimax solutions of the Hamilton-Jacobi-Bellman equation in terms of classical characteristics”, Proc. Steklov Inst. Math. (Suppl.), 268, suppl. 1 (2010), S222–S239 | DOI

[13] Rodin A.S., “On the structure of the singular set of a piecewise smooth minimax solution to the Hamilton-Jacobi-Bellman equation”, Trudy Inst. Mat. i Mekh. UrO RAN, 21:2 (2015), 198–205 (in Russian) | MR