@article{UMJ_2016_2_1_a5,
author = {Aleksei S. Rodin},
title = {On the structure of singular set of a piecewise smooth minimax solution of {Hamilton-Jacobi-Bellman} equation},
journal = {Ural mathematical journal},
pages = {58--68},
year = {2016},
volume = {2},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2016_2_1_a5/}
}
TY - JOUR AU - Aleksei S. Rodin TI - On the structure of singular set of a piecewise smooth minimax solution of Hamilton-Jacobi-Bellman equation JO - Ural mathematical journal PY - 2016 SP - 58 EP - 68 VL - 2 IS - 1 UR - http://geodesic.mathdoc.fr/item/UMJ_2016_2_1_a5/ LA - en ID - UMJ_2016_2_1_a5 ER -
Aleksei S. Rodin. On the structure of singular set of a piecewise smooth minimax solution of Hamilton-Jacobi-Bellman equation. Ural mathematical journal, Tome 2 (2016) no. 1, pp. 58-68. http://geodesic.mathdoc.fr/item/UMJ_2016_2_1_a5/
[1] Bellman R., Dynamic programming, Princeton Univ. Press, Princeton, 1957, 392 pp.
[2] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V. and Mishchenko E.F., The mathematical theory of optimal processes, Wiley, New York–London, 1962, 360 pp.
[3] Krasovskii N.N., Theory of motion control, Nauka, Moscow, 1968, 476 pp. (in Russian)
[4] Subbotina N.N., Kolpakova E.A., Tokmantsev T.B. and Shagalova L.G., The method of characteristics for Hamilton–Jacobi–Bellman equations, RIO UrO RAN, Ekaterinburg, 2013, 244 pp. (in Russian)
[5] Kolpakova E.A., “A generalized method of characteristics in the theory of Hamilton–Jacobi equations and conservation laws”, Trudy Inst. Mat. i Mekh. UrO RAN, 16:5 (2010), 95–102 (in Russian)
[6] Melikyan A.A., Generalized characteristics of first order PDEs: applications in optimal control and differential games, Birkhauser, Boston, 1998
[7] Cannarsa P., Sinestrari C., Semiconcave functions, Hamilton-Jacobi equations and optimal control, Progress in Nonlinear Differential Equations and Their Applications, Birkhauser Basel, Boston, 2004, 304 pp. | DOI
[8] Petrovskii I.G., Lectures on the theory of ordinary differential equations, Mosk. Gos. Univ., Moscow, 1984, 296 pp. (in Russian)
[9] Rockafellar R., Convex analysis, Princeton Univ. Press, Princeton, 1970, 470 pp.
[10] Subbotin A.I., Generalized solutions of first-order PDEs. The dynamical optimization perspective., Birkhauser, New York, 1995, 336 pp. | DOI
[11] Crandall M.G. and Lions P.L., “Viscosity solutions of Hamilton-Jacobi equations”, Trans. Amer. Math. Soc, 277:1 (1983), 1–42
[12] Subbotina N.N. and Kolpakova E.A., “On the structure of locally Lipschitz minimax solutions of the Hamilton-Jacobi-Bellman equation in terms of classical characteristics”, Proc. Steklov Inst. Math. (Suppl.), 268, suppl. 1 (2010), S222–S239 | DOI
[13] Rodin A.S., “On the structure of the singular set of a piecewise smooth minimax solution to the Hamilton-Jacobi-Bellman equation”, Trudy Inst. Mat. i Mekh. UrO RAN, 21:2 (2015), 198–205 (in Russian) | MR