Fractional analog of crank-nicholson method for the two sided space fractional partial equation with functional delay
Ural mathematical journal, Tome 2 (2016) no. 1, pp. 48-57

Voir la notice de l'article provenant de la source Math-Net.Ru

For two sided space fractional diffusion equation with time functional after-effect, an implicit numerical method is constructed and the order of its convergence is obtained. The method is a fractional analogue of the Crank-Nicholson method, and also uses interpolation and extrapolation of the prehistory of model with respect to time.
Keywords: Fractional partial differential equation, Grunwald-Letnikov approximations, Grid schemes, Functional delay
Mots-clés : Interpolation, Extrapolation, Convergence order.
@article{UMJ_2016_2_1_a4,
     author = {Vladimir G. Pimenov and Ahmed S. Hendy},
     title = {Fractional analog of crank-nicholson method for the two sided space fractional partial equation with functional delay},
     journal = {Ural mathematical journal},
     pages = {48--57},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2016_2_1_a4/}
}
TY  - JOUR
AU  - Vladimir G. Pimenov
AU  - Ahmed S. Hendy
TI  - Fractional analog of crank-nicholson method for the two sided space fractional partial equation with functional delay
JO  - Ural mathematical journal
PY  - 2016
SP  - 48
EP  - 57
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2016_2_1_a4/
LA  - en
ID  - UMJ_2016_2_1_a4
ER  - 
%0 Journal Article
%A Vladimir G. Pimenov
%A Ahmed S. Hendy
%T Fractional analog of crank-nicholson method for the two sided space fractional partial equation with functional delay
%J Ural mathematical journal
%D 2016
%P 48-57
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2016_2_1_a4/
%G en
%F UMJ_2016_2_1_a4
Vladimir G. Pimenov; Ahmed S. Hendy. Fractional analog of crank-nicholson method for the two sided space fractional partial equation with functional delay. Ural mathematical journal, Tome 2 (2016) no. 1, pp. 48-57. http://geodesic.mathdoc.fr/item/UMJ_2016_2_1_a4/