On calculating the value of a differential game in the class of counter strategies
Ural mathematical journal, Tome 2 (2016) no. 1, pp. 38-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a linear dynamical system with control and disturbance, a feedback control problem is considered, in which the Euclidean norm of a set of deviations of the system's motion from given targets at given instants of time is optimized. The problem is formalized into a differential game in “strategy-counter strategy” classes. A game value computing procedure which reduces the problem to a recursive construction of upper convex hulls of auxiliary functions is justified. Results of numerical simulations are presented.
Keywords: Differential games, Value of the game, Saddle point, Counter strategies.
@article{UMJ_2016_2_1_a3,
     author = {Mikhail I. Gomoyunov and Dmitry V. Kornev},
     title = {On calculating the value of a differential game in the class of counter strategies},
     journal = {Ural mathematical journal},
     pages = {38--47},
     year = {2016},
     volume = {2},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2016_2_1_a3/}
}
TY  - JOUR
AU  - Mikhail I. Gomoyunov
AU  - Dmitry V. Kornev
TI  - On calculating the value of a differential game in the class of counter strategies
JO  - Ural mathematical journal
PY  - 2016
SP  - 38
EP  - 47
VL  - 2
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2016_2_1_a3/
LA  - en
ID  - UMJ_2016_2_1_a3
ER  - 
%0 Journal Article
%A Mikhail I. Gomoyunov
%A Dmitry V. Kornev
%T On calculating the value of a differential game in the class of counter strategies
%J Ural mathematical journal
%D 2016
%P 38-47
%V 2
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2016_2_1_a3/
%G en
%F UMJ_2016_2_1_a3
Mikhail I. Gomoyunov; Dmitry V. Kornev. On calculating the value of a differential game in the class of counter strategies. Ural mathematical journal, Tome 2 (2016) no. 1, pp. 38-47. http://geodesic.mathdoc.fr/item/UMJ_2016_2_1_a3/

[1] Krasovskii N.N., Control of a Dynamic System. Problem about the Minimum of the Guaranteed Result, Nauka, Moscow, 1985 (in Russian)

[2] Isaacs R., Differential Games, John Wiley, New York, 1965

[3] Krasovskii N.N., “On the problem of unification of differential games”, Doklady AN SSSR, 226:6 (1976), 1260–1263

[4] Krasovskii A.N., “Construction of mixed strategies on the basis of stochastic programs”, J. Appl. Math. Mech, 51:2 (1987), 144–149

[5] Krasovskii A.N., Control under Lack of Information, Birkhauser, Berlin etc., 1995 | DOI

[6] Subbotin A.I., Minimax Inequalities and Hamilton-Jacobi Equations, Nauka, Moscow, 1991 (in Russian)

[7] Subbotin A.I., Generalized Solutions of First Order PDEs. The Dynamical Optimization Perspective, Birkhauser, Boston etc., 1995 | DOI

[8] Subbotin A.I., “Existence and Uniqueness Results for Hamilton-Jacobi Equations”, Nonlinear Anal., 16:7/8 (1991), 683–699

[9] Lukoyanov N.Yu., “One differential game with nonterminal payoff”, Izvestiya akademii nauk. Teoriya i sistemy upravleniya, 1997, no. 1, 85–90

[10] Lukoyanov N.Yu., “The problem of computing the value of a differential game for a positional functional”, J. Appl. Math. Mech, 62:2 (1998), 177–186

[11] Blagodatskikh V.I., Filippov A.F., “Differential inclusions and optimal control”, Proc. Steklov Inst. Math., 169 (1986), 199–259

[12] Krasovskii A.N., Reshetova T.N., Control under Information Deficiency: Study Guide, UrGU, Sverdlovsk, 1990 (in Russian)

[13] Kornev D.V., “On numerical solution of positional differential games with nonterminal payoff”, Autom. Remote Control, 73:11 (2012), 1808–1821 | DOI