Structural and extremal properties of the hot rolling batches precedence graph
Ural mathematical journal, Tome 2 (2016) no. 1, pp. 9-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study structural properties and properties of maximal paths of the hot rolling batches precedence graph. The hot rolling batches precedence graph arises in the problem of planning and scheduling of a hot strip mill load. Slab batches are selected and sequenced in turns. Basic technological restrictions on batch sequencing in turns are represented by the rolling batches precedence graph. Some fundamental structural properties of this graphs are stated such as the local block structure and the maximal paths structure. Motivation and overview of the result application potential are also provided.
Keywords: Hot rolling planning, Precedence graph, Graph structure, Local block structure, Maximal paths.
@article{UMJ_2016_2_1_a1,
     author = {Anton A. Berezin and Svetlana I. Leonova and Igor A. Vakula},
     title = {Structural and extremal properties of the hot rolling batches precedence graph},
     journal = {Ural mathematical journal},
     pages = {9--16},
     year = {2016},
     volume = {2},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2016_2_1_a1/}
}
TY  - JOUR
AU  - Anton A. Berezin
AU  - Svetlana I. Leonova
AU  - Igor A. Vakula
TI  - Structural and extremal properties of the hot rolling batches precedence graph
JO  - Ural mathematical journal
PY  - 2016
SP  - 9
EP  - 16
VL  - 2
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2016_2_1_a1/
LA  - en
ID  - UMJ_2016_2_1_a1
ER  - 
%0 Journal Article
%A Anton A. Berezin
%A Svetlana I. Leonova
%A Igor A. Vakula
%T Structural and extremal properties of the hot rolling batches precedence graph
%J Ural mathematical journal
%D 2016
%P 9-16
%V 2
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2016_2_1_a1/
%G en
%F UMJ_2016_2_1_a1
Anton A. Berezin; Svetlana I. Leonova; Igor A. Vakula. Structural and extremal properties of the hot rolling batches precedence graph. Ural mathematical journal, Tome 2 (2016) no. 1, pp. 9-16. http://geodesic.mathdoc.fr/item/UMJ_2016_2_1_a1/

[1] Balas E., “The prize collecting travelling salesman problem”, Networks, 19:6 (1989), 621– 636

[2] Balas E., Clarence H.M., “Combinatorial optimization in steel rolling”, Workshop on Combinatorial Optimization in Science and Technology, 1991

[3] Cowling P., Rezig W., “Integration of continuous caster and hot strip mill planning for steel production”, J. of Scheduling, 3:4 (2000), 185–208

[4] Harary F., Graph Theory, Addison-Wesley, Reading, MA, 1969, 274 pp.

[5] Chen X., Wan, W.-S. and Xu, X.-H., “Modeling rolling batch planning as vehicle routing problem with time windows”, Computers Operations Research, 25:12 (1998), 1127–1136

[6] Vakula I.A., Leonova S.I., “On building hot rolling turns”, Contemporary problems in mathematics and its applications: 45-th International Youth School-Conference: Proc., IMM UrB RAS, USU, Ekaterinburg, 2014, 164–166 (in Russian)

[7] Vakula I.A., Leonova S.I., “Hot rolling planning problem”, Mathematical programming and applications: XV-th All-Russian Conference: Abstr., IMM UrB RAS, USU, Ekaterinburg, 2015, 77–78 (in Russian)

[8] Lixin Tang, Jiyin Liu, Aiying Rong, Zihou Yang, “A review of planning and scheduling systems and methods for integrated steel production”, European J. of Operational Research, 133:1 (2001), 1–20

[9] Xianpeng Wang, Lixin Tang, “Integration of batching and scheduling for hot rolling production in the steel industry”, The International J. of Advanced Manufacturing Technology, 36 (2008), 431–441

[10] Shixin Liu, “Model and Algorithm for Hot Rolling Batch Planning in Steel Plants”, International J. of Information and Management Sciences, 21:3 (2010), 247–263