On an extremal problem for polynomials with fixed mean value
Ural mathematical journal, Tome 2 (2016) no. 1, pp. 3-8
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $T_n^+$ be the set of nonnegative trigonometric polynomials $\tau_n$ of degree $n$ that are strictly positive at zero. For $0\le\alpha\le2\pi/(n+2),$ we find the minimum of the mean value of polynomial $(\cos\alpha-\cos{x})\tau_n(x)/\tau_n(0)$ over $\tau_n\in{T_n^+}$ on the period $[-\pi,\pi).$ The paper was originally published in a hard accessible collection of articles Approximation of Functions by Polynomials and Splines (The Ural Scientific Center of the Academy of Sciences of the USSR, Sverdlovsk, 1985), p. 15–22 (in Russian).
Keywords:
Trigonometric polynomials, Extremal problem.
@article{UMJ_2016_2_1_a0,
author = {Alexander G. Babenko},
title = {On an extremal problem for polynomials with fixed mean value},
journal = {Ural mathematical journal},
pages = {3--8},
year = {2016},
volume = {2},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2016_2_1_a0/}
}
Alexander G. Babenko. On an extremal problem for polynomials with fixed mean value. Ural mathematical journal, Tome 2 (2016) no. 1, pp. 3-8. http://geodesic.mathdoc.fr/item/UMJ_2016_2_1_a0/
[1] Krylov V.I., Approximate calculation of integrals, Fizmatgiz, Moscow, 1959 (in Russian)
[2] Polya G., Szego G., Problems and theorems in analysis, v. 2, Springer, Berlin, 1998
[3] Prudnikov A. P., Brychkov Yu. A., Marichev O.I., Integrals and series, Nauka, Moscow, 1981 (in Russian)
[4] Fejer L., “Uber trigonometrische polynome”, J. Reine und Angew. Math., 146 (1915), 53–82