On an extremal problem for polynomials with fixed mean value
Ural mathematical journal, Tome 2 (2016) no. 1, pp. 3-8

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $T_n^+$ be the set of nonnegative trigonometric polynomials $\tau_n$ of degree $n$ that are strictly positive at zero. For $0\le\alpha\le2\pi/(n+2),$ we find the minimum of the mean value of polynomial $(\cos\alpha-\cos{x})\tau_n(x)/\tau_n(0)$ over $\tau_n\in{T_n^+}$ on the period $[-\pi,\pi).$ The paper was originally published in a hard accessible collection of articles Approximation of Functions by Polynomials and Splines (The Ural Scientific Center of the Academy of Sciences of the USSR, Sverdlovsk, 1985), p. 15–22 (in Russian).
Keywords: Trigonometric polynomials, Extremal problem.
@article{UMJ_2016_2_1_a0,
     author = {Alexander G. Babenko},
     title = {On an extremal problem for polynomials with fixed mean value},
     journal = {Ural mathematical journal},
     pages = {3--8},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2016_2_1_a0/}
}
TY  - JOUR
AU  - Alexander G. Babenko
TI  - On an extremal problem for polynomials with fixed mean value
JO  - Ural mathematical journal
PY  - 2016
SP  - 3
EP  - 8
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2016_2_1_a0/
LA  - en
ID  - UMJ_2016_2_1_a0
ER  - 
%0 Journal Article
%A Alexander G. Babenko
%T On an extremal problem for polynomials with fixed mean value
%J Ural mathematical journal
%D 2016
%P 3-8
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2016_2_1_a0/
%G en
%F UMJ_2016_2_1_a0
Alexander G. Babenko. On an extremal problem for polynomials with fixed mean value. Ural mathematical journal, Tome 2 (2016) no. 1, pp. 3-8. http://geodesic.mathdoc.fr/item/UMJ_2016_2_1_a0/