Mots-clés : Estimation.
@article{UMJ_2015_1_1_a3,
author = {Tatiana F. Filippova and Oksana G. Matviychuk},
title = {Estimates of reachable sets of control systems with bilinear-quadratic nonlinearities},
journal = {Ural mathematical journal},
pages = {45--54},
year = {2015},
volume = {1},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2015_1_1_a3/}
}
TY - JOUR AU - Tatiana F. Filippova AU - Oksana G. Matviychuk TI - Estimates of reachable sets of control systems with bilinear-quadratic nonlinearities JO - Ural mathematical journal PY - 2015 SP - 45 EP - 54 VL - 1 IS - 1 UR - http://geodesic.mathdoc.fr/item/UMJ_2015_1_1_a3/ LA - en ID - UMJ_2015_1_1_a3 ER -
Tatiana F. Filippova; Oksana G. Matviychuk. Estimates of reachable sets of control systems with bilinear-quadratic nonlinearities. Ural mathematical journal, Tome 1 (2015) no. 1, pp. 45-54. http://geodesic.mathdoc.fr/item/UMJ_2015_1_1_a3/
[1] Bertsekas D.P., Rhodes I.B., “Recursive state estimation for a set-membership description of uncertainty”, IEEE Transactions on Automatic Control, 1971, no. 16, 117–128
[2] Boyd S., El Ghaoui L., Feron E., Balakrishnan V., Linear Matrix Inequalities in System and Control Theory, Studies in Applied Mathematics, 15, SIAM, 1994, 193 pp.
[3] Chernousko F.L., State Estimation for Dynamic Systems, CRC Press., Boca Raton, 1994, 320 pp.
[4] Chernousko F.L., “Ellipsoidal approximation of the reachable sets of linear systems with an indeterminate matrix”, Applied Mathematics and Mechanics, 60:6 (1996), 940–950
[5] Chernousko F.L., Rokityanskii D.Ya., “Ellipsoidal bounds on reachable sets of dynamical systems with matrices subjected to uncertain perturbations”, J. of Optimiz. Theory and Appl., 104:1 (2000), 1–19
[6] Chernousko F.L., Ovseevich A.I., “Properties of the optimal ellipsoids approximating the reachable sets of uncertain systems”, J. of Optimiz. Theory and Appl., 120:2 (2004), 223–246
[7] Filippova T.F., “Estimates of Trajectory Tubes of Uncertain Nonlinear Control Systems”, Lect. Notes in Comput. Sci., 5910, 2010, 272–279
[8] Filippova T.F., “Trajectory tubes of nonlinear differential inclusions and state estimation problems”, J. of Concrete and Applicable Mathematics, 2010, no. 8, 454–469
[9] Filippova T.F., “Set-valued dynamics in problems of mathematical theory of control processes”, International J. of Modern Physics. Series B, 26:25 (2012), 1–8
[10] Filippova T.F., Lisin D.V., “On the estimation of trajectory tubes of differential inclusions”, Problems Control Dynam. Systems, Proc. Steklov Inst. Math., 2000, S28-S37
[11] Filippova T.F., Matviychuk O.G., “Algorithms to estimate the reachability sets of the pulse controlled systems with ellipsoidal phase constraints”, Automat. Remote Control, 72:9 (2011), 1911–1924
[12] Filippova T.F., Matviychuk O.G., “Algorithms of estimating reachable sets of nonlinear control systems with uncertainty”, Proc. of the 7th Chaotic Modeling and Simulation Int. Conf. (Lisbon, Portugal, 7-10 June, 2014), 2014, 115–124
[13] Goncharova E.V., Ovseevich A.I., “Asymptotic theory of attainable set to linear periodic impulsive control systems”, J. of Computer and Systems Sciences International, 49:4 (2010), 515–523
[14] Kurzhanski A.B., Filippova T.F., “On the theory of trajectory tubes - a mathematical formalism for uncertain dynamics, viability and control”, Advances in nonlinear dynamics and control: a report from Russia, Progr. Systems Control Theory, 17, Birkhauser, Boston, 1993, 122–188 | MR
[15] Kurzhanski A.B., Valyi I., Ellipsoidal Calculus for Estimation and Control, Birkhäuser, Boston, 1997, 321 pp.
[16] Kurzhanski A.B., Varaiya P., Dynamics and Control of Trajectory Tubes. Theory and Computation, Springer–Verlag, New York, 2014, 445 pp.
[17] Matviychuk O.G., “Estimation Problem for Impulsive Control Systems under Ellipsoidal State Bounds and with Cone Constraint on the Control”, AIP Conf. Proc, 1497 (2012), 3–12
[18] Mazurenko S.S., “A differential equation for the gauge function of the star-shaped attainability set of a differential inclusion”, Doklady Mathematics, 86:1 (2012), 476–479
[19] Bounding Approaches to System Identification., eds. Milanese M., Norton J., Piet-Lahanier H., Walter E., Springer US, New York, 1996, 567 pp.
[20] Polyak B.T., Nazin S.A., Durieu C., Walter E., “Ellipsoidal parameter or state estimation under model uncertainty”, Automatica, 40 (2004), 1171–1179
[21] Rishel R.W., “An Extended Pontryagin Principle for Control System whose Control Laws Contain Measures”, SIAM J. Control Series A, 3:2 (1965), 191–205
[22] Schweppe F., Uncertain Dynamic Systems: Modelling, Estimation, Hypothesis Testing, Identification and Control, Prentice-Hall, Englewood Cliffs, New Jersey, 1973, 576 pp.
[23] Walter E., Pronzato L., Identification of parametric models from experimental data, Springer–Verlag, London, 1997, 413 pp.