Ill-posed problem of reconstruction of the population size in the hutchinson-wright equation
Ural mathematical journal, Tome 1 (2015) no. 1, pp. 30-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider an ill-posed problem of reconstruction of the population size in the Hutchinson-Wright Equation. Regularized solutions were constructed on the finite interval of the negative half-line.
Keywords: The Hutchinson-Wright equation, Ill-posed problem, Asymptotic methods.
@article{UMJ_2015_1_1_a2,
     author = {Yurii F. Dolgii and Platon G. Surkov},
     title = {Ill-posed problem of reconstruction of the population size in the hutchinson-wright equation},
     journal = {Ural mathematical journal},
     pages = {30--44},
     year = {2015},
     volume = {1},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2015_1_1_a2/}
}
TY  - JOUR
AU  - Yurii F. Dolgii
AU  - Platon G. Surkov
TI  - Ill-posed problem of reconstruction of the population size in the hutchinson-wright equation
JO  - Ural mathematical journal
PY  - 2015
SP  - 30
EP  - 44
VL  - 1
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UMJ_2015_1_1_a2/
LA  - en
ID  - UMJ_2015_1_1_a2
ER  - 
%0 Journal Article
%A Yurii F. Dolgii
%A Platon G. Surkov
%T Ill-posed problem of reconstruction of the population size in the hutchinson-wright equation
%J Ural mathematical journal
%D 2015
%P 30-44
%V 1
%N 1
%U http://geodesic.mathdoc.fr/item/UMJ_2015_1_1_a2/
%G en
%F UMJ_2015_1_1_a2
Yurii F. Dolgii; Platon G. Surkov. Ill-posed problem of reconstruction of the population size in the hutchinson-wright equation. Ural mathematical journal, Tome 1 (2015) no. 1, pp. 30-44. http://geodesic.mathdoc.fr/item/UMJ_2015_1_1_a2/

[1] Lack D., The Natural Regulation of Animal Number, Oxford University Press, London, 1954, 343 pp.

[2] Report on the state and protection of the environment of the Vologda region in 2006, Government of the Vologda region, the Department of environment and natural resources of the Vologda region, Vologda, 2007, 222 pp. (in Russian)

[3] Mishchenko E.F., Kolesov Yu.S., Kolesov A.Yu., Rozov N.Kh., Asymptotic methods in singularly perturbed systems, Monogr. Contemp. Math., Consultants Bureau, New York, 1994, 281 pp.

[4] Hassard B.D., Kazarinov N.D., Wan Y.H., Theory and application of the Hopf bifurcation, Cambridge University Press, Cambridge, 1981, 320 pp.

[5] Shampine L.F., Gladwell I., Thompson S., Solving ODEs with MATLAB PDF, Cambridge University Press, Cambridge, 2003, 272 pp.

[6] Tikhonov A.N., Arsenin V.Y., Solutions of ill-posed problems, Winston, New York, 1977, 258 pp.

[7] Vainberg M.M., Variational Method and Method of Monotone Operators, John Wiley and Sons,, New York, 1974, 356 pp.

[8] Kantorovich L.V., Akilov G.P., Functional Analysis, Functional Analysis, Pergamon Press, New York, 1982, 604 pp.

[9] Hale J.K., Verduyn-Lunel S.M., Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99, Springer-Verlag, New York, 1993, 450 pp.

[10] Danilkin A.A., Reindeer (Cervidae), GEOS, Moscow, 1999, 552 pp. (in Russian)