Linear programming and dynamics
    
    
  
  
  
      
      
      
        
Ural mathematical journal, Tome 1 (2015) no. 1, pp. 3-19
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In a Hilbert space we consider the linear boundary value problem of optimal control based on the linear dynamics and the terminal linear programming problem at the right end of the time interval. There is provided a saddle-point method to solve it. Convergence of the method is proved.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Linear programming, Optimal control, Boundary value problems, Methods for solving problems, Stability.
Mots-clés : Convergence
                    
                  
                
                
                Mots-clés : Convergence
@article{UMJ_2015_1_1_a0,
     author = {Anatoly S. Antipin and Elena V. Khoroshilova},
     title = {Linear programming and dynamics},
     journal = {Ural mathematical journal},
     pages = {3--19},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2015_1_1_a0/}
}
                      
                      
                    Anatoly S. Antipin; Elena V. Khoroshilova. Linear programming and dynamics. Ural mathematical journal, Tome 1 (2015) no. 1, pp. 3-19. http://geodesic.mathdoc.fr/item/UMJ_2015_1_1_a0/
