Mots-clés : Convergence
@article{UMJ_2015_1_1_a0,
author = {Anatoly S. Antipin and Elena V. Khoroshilova},
title = {Linear programming and dynamics},
journal = {Ural mathematical journal},
pages = {3--19},
year = {2015},
volume = {1},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UMJ_2015_1_1_a0/}
}
Anatoly S. Antipin; Elena V. Khoroshilova. Linear programming and dynamics. Ural mathematical journal, Tome 1 (2015) no. 1, pp. 3-19. http://geodesic.mathdoc.fr/item/UMJ_2015_1_1_a0/
[1] Eremin I.I., Mazurov Vl.D., Astafjev N.N., Improper problems of linear and convex programming, Nauka, Moscow, 1983, 336 pp. (in Russian)
[2] Eremin I.I., Conflicting models of optimal planning, Nauka, Moscow, 1988, 160 pp. (in Russian)
[3] Eremin I.I, “Duality for Pareto-successive linear optimization problems”, Trudy Inst. Mat. i Mekh. UrO RAN, 3, 1995, 245–260 | MR | Zbl
[4] Eremin I.I., The theory of linear optimization, UrO RAN, Ekaterinburg, 1999, 312 pp. (in Russian)
[5] Eremin I.I., Mazurov V.D., Questions of optimization and pattern recognition, Sredne-Ural. knizh. izd-vo, Sverdlovsk, 1979, 64 pp. (in Russian)
[6] Eremin I.I., The theory of duality in linear optimization, Publishing house YUUrGU, Chelyabinsk, 2005, 195 pp. (in Russian)
[7] Vasiliev F.P., Methods of optimization, in 2 bks., v. 1, 2, MTsNMO, Moscow, 2011, 620 pp. (in Russian)
[8] Kolmogorov A.N., Fomin S.V., Elements of the theory of functions and functional analysis, FIZMATLIT, Moscow, 2009, 572 pp. (in Russian)
[9] Vasiliev F.P., Khoroshilova E.V., Antipin A.S., “An Extragradient Method for Finding the Saddle Point in an Optimal Control Problem”, Moscow University Comp. Maths. and Cybernetics, 34:3 (2010), 113–118
[10] Antipin A.S., Khoroshilova E.V., “On methods of extragradient type for solving optimal control problems with linear constraints”, Izvestiya IGU. Seriya: Matematika, 3 (2010), 2–20
[11] Vasiliev F.P., Khoroshilova E.V., Antipin A.S., “Regularized extragradient method for finding a saddle point in optimal control problem”, Proc. Steklov Inst. Math., 275, Suppl. 1. (2011), S186–S196
[12] Antipin A.S., “Two-person game with Nash equilibrium in optimal control problems”, Optim. Lett., 6:7 (2012), 1349–1378
[13] Khoroshilova E.V., “Extragradient method of optimal control with terminal constraints”, Autom. Remote Control, 73:3 (2012), 517–531 | DOI
[14] Khoroshilova E.V., “Extragradient-type method for optimal control problem with linear constraints and convex objective function”, Optim. Lett., 7:6 (2013), 1193–1214
[15] Antipin A.S., “Terminal Control of Boundary Models”, Comput. Math. Math. Phys., 54:2 (2014), 257–285
[16] Antipin A.S., Khoroshilova E.V., “On boundary value problem of terminal control with quadratic quality criterion”, Izvestiya IGU. Seriya: Matematika, 8 (2014), 7–28
[17] Antipin A.S., Vasilieva O.O., “Dynamic method of multipliers in terminal control”, Comput. Math. Math. Phys, 55:5 (2015), 766–787
[18] Antipin A.S., Khoroshilova E.V., “Optimal Control with Connected Initial and Terminal Conditions”, Proc. Steklov Inst. Math. (Suppl.), 289, suppl. 1 (2015), S9–S25 | DOI
[19] Konnov I.V., Equilibrium Models and Variational Inequalities, Mathematics in Science and Engineering, 210, Amsterdam, 2007, 248 pp.