Linear programming and dynamics
Ural mathematical journal, Tome 1 (2015) no. 1, pp. 3-19

Voir la notice de l'article provenant de la source Math-Net.Ru

In a Hilbert space we consider the linear boundary value problem of optimal control based on the linear dynamics and the terminal linear programming problem at the right end of the time interval. There is provided a saddle-point method to solve it. Convergence of the method is proved.
Keywords: Linear programming, Optimal control, Boundary value problems, Methods for solving problems, Stability.
Mots-clés : Convergence
@article{UMJ_2015_1_1_a0,
     author = {Anatoly S. Antipin and Elena V. Khoroshilova},
     title = {Linear programming and dynamics},
     journal = {Ural mathematical journal},
     pages = {3--19},
     publisher = {mathdoc},
     volume = {1},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UMJ_2015_1_1_a0/}
}
TY  - JOUR
AU  - Anatoly S. Antipin
AU  - Elena V. Khoroshilova
TI  - Linear programming and dynamics
JO  - Ural mathematical journal
PY  - 2015
SP  - 3
EP  - 19
VL  - 1
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UMJ_2015_1_1_a0/
LA  - en
ID  - UMJ_2015_1_1_a0
ER  - 
%0 Journal Article
%A Anatoly S. Antipin
%A Elena V. Khoroshilova
%T Linear programming and dynamics
%J Ural mathematical journal
%D 2015
%P 3-19
%V 1
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UMJ_2015_1_1_a0/
%G en
%F UMJ_2015_1_1_a0
Anatoly S. Antipin; Elena V. Khoroshilova. Linear programming and dynamics. Ural mathematical journal, Tome 1 (2015) no. 1, pp. 3-19. http://geodesic.mathdoc.fr/item/UMJ_2015_1_1_a0/