@article{UFA_2024_16_4_a9,
author = {I. T. Habibullin and A. R. Khakimova},
title = {Construction of exact solutions of nonlinear {PDE} via dressing chain in {3D}},
journal = {Ufa mathematical journal},
pages = {124--135},
year = {2024},
volume = {16},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2024_16_4_a9/}
}
I. T. Habibullin; A. R. Khakimova. Construction of exact solutions of nonlinear PDE via dressing chain in 3D. Ufa mathematical journal, Tome 16 (2024) no. 4, pp. 124-135. http://geodesic.mathdoc.fr/item/UFA_2024_16_4_a9/
[1] A.N. Leznov, A.B. Shabat, R.I. Yamilov, “Canonical transformations generated by shifts in nonlinear lattices”, Phys. Lett., A, 174:5–6 (1993), 397–402 | DOI | MR
[2] A.B. Shabat, R.I. Yamilov, “To a transformation theory of two–dimensional integrable systems”, Phys. Lett., A,, 227:1–2 (1997), 15–23 | DOI | MR | Zbl
[3] I.T. Habibullin, “Characteristic Lie rings, finitely–generated modules and integrability conditions for (2+1)–dimensional lattices”, Phys. Scr., 87:6 (2013), 065005 | DOI | Zbl
[4] M.N. Poptsova, I.T. Habibullin, “Algebraic properties of quasilinear two–dimensional lattices connected with integrability”, Ufa Math. J., 10:3 (2018), 86–105 | DOI | MR | Zbl
[5] I.T. Habibullin, M.N. Kuznetsova, “A classification algorithm for integrable two–dimensional lattices via Lie — Rinehart algebras”, Theor. Math. Phys., 203:1 (2020), 569–581 | DOI | MR | Zbl
[6] M.N. Kuznetsova, “Classification of a subclass of quasilinear two–dimensional lattices by means of characteristic algebras”, Ufa Math. J., 11:3 (2019), 10–131 | DOI | MR
[7] I.T. Habibullin, A.R. Khakimova, “Characteristic Lie algebras of integrable differential–difference equations in 3D”, J. Phys. A, Math. Theor., 54:29 (2021), 295202, 34 pp. | DOI | MR | Zbl
[8] I.T. Habibullin, A.R. Khakimova, Symmetries of Toda type 3D lattices, 2024, arXiv: 2409.07017 [nlin.SI] | MR | Zbl
[9] B. Gürel, I. Habibullin, “Boundary conditions for two–dimensional integrable chains”, Phys. Lett., A, 233:1 (1997), 68–72 | DOI | MR | Zbl
[10] A.V. Zhiber, V.V. Sokolov, “Exactly integrable hyperbolic equations of Liouville type”, Russ. Math. Surv., 56:1 (2001), 61–101 | DOI | MR | Zbl
[11] I.T. Habibullin, A.U. Sakieva, “On integrable reductions of two–dimensional Toda–type lattices”, Part. Diff. Eq. Appl. Math., 11 (2024), 100854
[12] A.B. Shabat, R.I. Yamilov, “Symmetries of nonlinear chains”, Leningr. Math. J., 2:2 (1991), 377–400 | MR | Zbl
[13] V.B. Matveev, A.O. Smirnov, “Dubrovin method and Toda lattice”, St. Petersbg. Math. J., 34:6 (2023), 1019–1037 | DOI | MR | Zbl
[14] P.G. Grinevich, P.M. Santini, “The finite–gap method and the periodic Cauchy problem for (2+1)–dimensional anomalous waves for the focusing Davey — Stewartson 2 equation”, Russ. Math. Surv., 77:6 (2022), 1029–1059 | DOI | MR | Zbl
[15] I.A. Taimanov, “The Moutard transformation for the Davey — Stewartson II equation and its geometrical meaning”, Math. Notes, 110:5 (2021), 754–766 | DOI | MR | Zbl
[16] V.E. Zakharov, S.V. Manakov, “Construction of higher–dimensional nonlinear integrable systems and of their solutions”, Funct. Anal. Appl., 19:2 (1985), 89–101 | DOI | MR | Zbl
[17] R.Ch. Kulaev, A.B. Shabat, “Darboux system and separation of variables in the Goursat problem for a third order equation in $R^3$”, Russ. Math., 64:4 (2020), 35–43 | DOI | MR | Zbl
[18] B.G. Konopelchenko, B.T. Matkarimov, “Inverse spectral transform for the nonlinear evolution equation generating the Davey — Stewartson and Ishimori equations”, Stud. Appl. Math., 82:4 (1990), 319–359 | DOI | MR | Zbl
[19] M.N. Kuznetsova, “Construction of localized particular solutions of chains with three independent variables”, Theor. Math. Phys., 216:2 (2023), 1158–1167 | DOI | MR | Zbl
[20] M.N. Kuznetsova, I.T. Habibullin, A.R. Khakimova, “On the problem of classifying integrable chains with three independent variables”, Theor. Math. Phys., 215:2 (2023), 667–690 | DOI | MR | Zbl