Construction of exact solutions of nonlinear PDE via dressing chain in 3D
Ufa mathematical journal, Tome 16 (2024) no. 4, pp. 124-135
Voir la notice de l'article provenant de la source Math-Net.Ru
The duality between a class of the Davey — Stewartson type coupled systems and a class of two–dimensional Toda type lattices is discussed. A new coupled system related to the recently found lattice is presented. A method for eliminating nonlocalities in coupled systems by virtue of special finite reductions of the lattices is suggested. An original algorithm for constructing explicit solutions of the coupled systems based on the finite reduction of the corresponding lattice is proposed. Some new solutions for coupled systems related to the Volterra lattice are presented as illustrative examples.
Keywords:
3D lattices, generalized symmetries, Darboux integrable reductions, Lax pairs, Davey — Stewartson type coupled system.
@article{UFA_2024_16_4_a9,
author = {I. T. Habibullin and A. R. Khakimova},
title = {Construction of exact solutions of nonlinear {PDE} via dressing chain in {3D}},
journal = {Ufa mathematical journal},
pages = {124--135},
publisher = {mathdoc},
volume = {16},
number = {4},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2024_16_4_a9/}
}
TY - JOUR AU - I. T. Habibullin AU - A. R. Khakimova TI - Construction of exact solutions of nonlinear PDE via dressing chain in 3D JO - Ufa mathematical journal PY - 2024 SP - 124 EP - 135 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2024_16_4_a9/ LA - en ID - UFA_2024_16_4_a9 ER -
I. T. Habibullin; A. R. Khakimova. Construction of exact solutions of nonlinear PDE via dressing chain in 3D. Ufa mathematical journal, Tome 16 (2024) no. 4, pp. 124-135. http://geodesic.mathdoc.fr/item/UFA_2024_16_4_a9/