Series of boundary value problems for Euler — Darboux equation with two degeneracy lines
Ufa mathematical journal, Tome 16 (2024) no. 4, pp. 94-115 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we introduce a new partial differential equation, which is an extension of the known Euler — Darboux equation. On the base of the proven properties of solution to introduced equation we explicitly find general solutions for various values of parameters, prove existence and uniqueness theorems. Basing on the general solutions of introduced equation, we solve the Cauchy problems and modified Cauchy problems in an upper right triangle. We find explicit solutions and prove the existence and uniqueness theorems for the posed problems.
Keywords: Euler — Darboux problem, Cauchy problem, general solution, solvability.
@article{UFA_2024_16_4_a7,
     author = {S. V. Podkletnova},
     title = {Series of boundary value problems for {Euler~{\textemdash}~Darboux} equation with two degeneracy lines},
     journal = {Ufa mathematical journal},
     pages = {94--115},
     year = {2024},
     volume = {16},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2024_16_4_a7/}
}
TY  - JOUR
AU  - S. V. Podkletnova
TI  - Series of boundary value problems for Euler — Darboux equation with two degeneracy lines
JO  - Ufa mathematical journal
PY  - 2024
SP  - 94
EP  - 115
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2024_16_4_a7/
LA  - en
ID  - UFA_2024_16_4_a7
ER  - 
%0 Journal Article
%A S. V. Podkletnova
%T Series of boundary value problems for Euler — Darboux equation with two degeneracy lines
%J Ufa mathematical journal
%D 2024
%P 94-115
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2024_16_4_a7/
%G en
%F UFA_2024_16_4_a7
S. V. Podkletnova. Series of boundary value problems for Euler — Darboux equation with two degeneracy lines. Ufa mathematical journal, Tome 16 (2024) no. 4, pp. 94-115. http://geodesic.mathdoc.fr/item/UFA_2024_16_4_a7/

[1] B. Riemann, Workds, Gostekhizdat, M., 1948 (in Russian)

[2] V.V. Sokolovskij, Plastisity theory, Vysshaya shkola, 1969 (in Russian) | MR

[3] V.F. Volkodovav, N.Ya. Nikolaev, Boundary value problems for Euler — Poisson — Darboux equation: learning guide to course “Equations of mathematical physics”, Kujbyshev State Pedagogical Institute, Kujbyshev, 1984 (in Russian) | MR

[4] V.F. Volkodovav, N.Ya. Nikolaev, “Boundary value problems for Euler — Darboux equation with negative parameters in unbounded domain. Part II. Theorem on existence of solution to problem”, Differential equations, Ryazan State Pedagogical Institute named after S.A. Esenin, Ryazan, 1981, 20 (in Russian)

[5] O.G. Aristova, “Boundary value problems for one hyperbolic equation with degeneration on non–characteristic curve”, Third International Conference dedicated to academician M. Kravchuk “Integral operators and their applications to boundary value problems”, Institute of Mathematics of Academy of Sciences of Ukraine, Kiev, 1994, 3 (in Ukrainian)

[6] R.S. Khairullin, “On the Euler — Poisson — Darboux equation theory”, Russ. Math., 37:11 (1993), 67–74 | MR | Zbl

[7] A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, H. Bateman, Higher transcendental functions, v. I, McGraw–Hill Book Co., New York, 1953 | MR

[8] I.S. Gradshteyn, I.M. Ryzhik, Table of integrals, series, and products, Elsevier/Academic Press, Amsterdam, 2015 | MR | MR | Zbl

[9] V.F. Volkodovav, N.Ya. Nikolaev, “On new problem with tranlsation in unbounded domain for Euler — Darboux equation with positive parameters”, Mathematical Physics, Kyjbyshev Polytechnical Institute, Kujbyshev, 1979, 3–9 (in Russian) | MR