Existence and uniqueness of solutions to outer Zaremba problem for elliptic equations with measure--valued potential
Ufa mathematical journal, Tome 16 (2024) no. 4, pp. 53-75

Voir la notice de l'article provenant de la source Math-Net.Ru

In the exterior of a ball in the space $\mathbb{R}^n$ we consider the Zaremba and Neumann problems for quasilinear second order elliptic problems with a measure–valued potential. We proved the existence and uniqueness of entropy solution to the Zaremba and Neumann problems.
Keywords: nonlinear elliptic equation, entropy solution, Radon measure, Zaremba problem.
@article{UFA_2024_16_4_a4,
     author = {F. Kh. Mukminov and O. S. Stekhun},
     title = {Existence and uniqueness of solutions to  outer {Zaremba} problem for elliptic equations   with measure--valued potential},
     journal = {Ufa mathematical journal},
     pages = {53--75},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2024_16_4_a4/}
}
TY  - JOUR
AU  - F. Kh. Mukminov
AU  - O. S. Stekhun
TI  - Existence and uniqueness of solutions to  outer Zaremba problem for elliptic equations   with measure--valued potential
JO  - Ufa mathematical journal
PY  - 2024
SP  - 53
EP  - 75
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2024_16_4_a4/
LA  - en
ID  - UFA_2024_16_4_a4
ER  - 
%0 Journal Article
%A F. Kh. Mukminov
%A O. S. Stekhun
%T Existence and uniqueness of solutions to  outer Zaremba problem for elliptic equations   with measure--valued potential
%J Ufa mathematical journal
%D 2024
%P 53-75
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2024_16_4_a4/
%G en
%F UFA_2024_16_4_a4
F. Kh. Mukminov; O. S. Stekhun. Existence and uniqueness of solutions to  outer Zaremba problem for elliptic equations   with measure--valued potential. Ufa mathematical journal, Tome 16 (2024) no. 4, pp. 53-75. http://geodesic.mathdoc.fr/item/UFA_2024_16_4_a4/