Borel transforms of functions in parametrized family of Hilbert spaces
Ufa mathematical journal, Tome 16 (2024) no. 4, pp. 21-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider Hilbert spaces of entire functions \begin{equation*} P_\beta (D)=\left \{F\in H(\mathbb{C}):\ \|F\|^2:=\int\limits_0^{2\pi }\int\limits_0^\infty \frac {|F(re^{i\varphi })|^2drd\Delta (\varphi)}{K(re^{i\varphi })r^{2\beta }}\infty \right \}, \end{equation*} where $D$ is a bounded convex domain on the complex plane, \begin{align*} (\lambda)=\|e^{\lambda z}\|^2_{L_2(D)}=\int\limits_D|e^{\lambda z}|^2dm(z),\quad \lambda \in \mathbb{C}, \\ (\varphi)=\max_{z\in \overline D} \mathrm{Re}\, ze^{i\varphi },\quad \varphi \in [0;2\pi ], \\ \Delta (\varphi)=h(\varphi)+\int\limits_{0}^\varphi h(\theta)d\theta,\quad \varphi \in [0;2\pi ]. \end{align*} The interest to these spaces is motivated by the fact that $P_0(D)$ is the space of Laplace transforms of linear continuous functionals on the Bergman space $B_2(D)$, while $P_{\frac 12}(D)$ is the space of Laplace transforms of linear continuous functionals on the Smirnov space $E_2(D)$. In the paper for the parameters $\beta \in \left (-\frac 12;\frac 32\right)$ we provide a complete description of the Borel transforms of functions in spaces $P_\beta (D)$. In this way, the Bergman and Smirnov spaces are embedded into a scale of Hilbert spaces and, in the authors' opinion, this could allow to apply the theory of Hilbert scales for studying the problems in these spaces.
Keywords: scale of Hilbert space, Bergman space, Smirnov space.
Mots-clés : Borel transform
@article{UFA_2024_16_4_a2,
     author = {K. P. Isaev and R. S. Yulmukhametov},
     title = {Borel transforms of functions in parametrized family of {Hilbert} spaces},
     journal = {Ufa mathematical journal},
     pages = {21--39},
     year = {2024},
     volume = {16},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2024_16_4_a2/}
}
TY  - JOUR
AU  - K. P. Isaev
AU  - R. S. Yulmukhametov
TI  - Borel transforms of functions in parametrized family of Hilbert spaces
JO  - Ufa mathematical journal
PY  - 2024
SP  - 21
EP  - 39
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2024_16_4_a2/
LA  - en
ID  - UFA_2024_16_4_a2
ER  - 
%0 Journal Article
%A K. P. Isaev
%A R. S. Yulmukhametov
%T Borel transforms of functions in parametrized family of Hilbert spaces
%J Ufa mathematical journal
%D 2024
%P 21-39
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2024_16_4_a2/
%G en
%F UFA_2024_16_4_a2
K. P. Isaev; R. S. Yulmukhametov. Borel transforms of functions in parametrized family of Hilbert spaces. Ufa mathematical journal, Tome 16 (2024) no. 4, pp. 21-39. http://geodesic.mathdoc.fr/item/UFA_2024_16_4_a2/

[1] B.Ya. Levin, Yu.I. Lyubarskii, “Interpolation by means of special classes of entire functions and related expansions in series of exponentials”, Math. USSR–Izv., 9:3 (1975), 621–662 | DOI | MR | Zbl

[2] V.I. Lutsenko, R.S. Yulmukhametov, “A generalization of the Paley — Wiener theorem to functionals on Smirnov spaces”, Proc. Steklov Inst. Math., 200 (1993), 271–280 | MR | Zbl

[3] K.P. Isaev, R.S. Yulmukhametov, “Laplace transforms of functionals on Bergman spaces”, Izv. Math., 68:1 (2004), 3–41 | DOI | DOI | MR | Zbl

[4] A. Borichev, Yu. Lyubarskii, “Riesz bases of reproducing kernels in Fock type spaces”, J. Inst. Math. Jussieu, 9:3 (2010), 449–461 | DOI | MR | Zbl

[5] A. Baranov, Yu. Belov, A. Borichev, “Fock type spaces with Riesz bases of reproducing kernels and de Branges spaces”, Stud. Math., 236:2 (2017), 127–142 | DOI | MR | Zbl

[6] K.P. Isaev, R.S. Yulmukhametov, “Unconditional bases in radial Hilbert spaces”, Izv. Math., 86:1 (2022), 150–168 | DOI | DOI | MR | Zbl

[7] K.P. Isaev, R.S. Yulmukhametov, “On a criterion for the existence of unconditional bases of reproducing kernels in Fock spaces with radial regular weight”, J. Math. Anal. Appl., 519:2 (2023), 126839, 17 pp. | DOI | MR | Zbl

[8] K.P. Isaev, A.V. Lutsenko, R.S. Yulmukhametov, “On a sufficient condition for the existence of unconditional bases of reproducing kernels in Fock type spaces with nonradial weights”, Anal. Math. Phys., 13:6 (2023), 83, 11 pp. | DOI | MR | Zbl

[9] V.I. Lutsenko, R.S. Yulmukhametov, “Generalization of the Paley — Wiener theorem in weighted spaces”, Math. Notes, 48:5 (1990), 1131–1136 | DOI | MR | Zbl | Zbl