Borel transforms of functions in parametrized family of Hilbert spaces
Ufa mathematical journal, Tome 16 (2024) no. 4, pp. 21-39

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider Hilbert spaces of entire functions \begin{equation*} P_\beta (D)=\left \{F\in H(\mathbb{C}):\ \|F\|^2:=\int\limits_0^{2\pi }\int\limits_0^\infty \frac {|F(re^{i\varphi })|^2drd\Delta (\varphi)}{K(re^{i\varphi })r^{2\beta }}\infty \right \}, \end{equation*} where $D$ is a bounded convex domain on the complex plane, \begin{align*} (\lambda)=\|e^{\lambda z}\|^2_{L_2(D)}=\int\limits_D|e^{\lambda z}|^2dm(z),\quad \lambda \in \mathbb{C}, \\ (\varphi)=\max_{z\in \overline D} \mathrm{Re}\, ze^{i\varphi },\quad \varphi \in [0;2\pi ], \\ \Delta (\varphi)=h(\varphi)+\int\limits_{0}^\varphi h(\theta)d\theta,\quad \varphi \in [0;2\pi ]. \end{align*} The interest to these spaces is motivated by the fact that $P_0(D)$ is the space of Laplace transforms of linear continuous functionals on the Bergman space $B_2(D)$, while $P_{\frac 12}(D)$ is the space of Laplace transforms of linear continuous functionals on the Smirnov space $E_2(D)$. In the paper for the parameters $\beta \in \left (-\frac 12;\frac 32\right)$ we provide a complete description of the Borel transforms of functions in spaces $P_\beta (D)$. In this way, the Bergman and Smirnov spaces are embedded into a scale of Hilbert spaces and, in the authors' opinion, this could allow to apply the theory of Hilbert scales for studying the problems in these spaces.
Keywords: scale of Hilbert space, Bergman space, Smirnov space.
Mots-clés : Borel transform
@article{UFA_2024_16_4_a2,
     author = {K. P. Isaev and R. S. Yulmukhametov},
     title = {Borel transforms of functions  in  parametrized family of {Hilbert} spaces},
     journal = {Ufa mathematical journal},
     pages = {21--39},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2024_16_4_a2/}
}
TY  - JOUR
AU  - K. P. Isaev
AU  - R. S. Yulmukhametov
TI  - Borel transforms of functions  in  parametrized family of Hilbert spaces
JO  - Ufa mathematical journal
PY  - 2024
SP  - 21
EP  - 39
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2024_16_4_a2/
LA  - en
ID  - UFA_2024_16_4_a2
ER  - 
%0 Journal Article
%A K. P. Isaev
%A R. S. Yulmukhametov
%T Borel transforms of functions  in  parametrized family of Hilbert spaces
%J Ufa mathematical journal
%D 2024
%P 21-39
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2024_16_4_a2/
%G en
%F UFA_2024_16_4_a2
K. P. Isaev; R. S. Yulmukhametov. Borel transforms of functions  in  parametrized family of Hilbert spaces. Ufa mathematical journal, Tome 16 (2024) no. 4, pp. 21-39. http://geodesic.mathdoc.fr/item/UFA_2024_16_4_a2/