Borel transforms of functions  in  parametrized family of Hilbert spaces
    
    
  
  
  
      
      
      
        
Ufa mathematical journal, Tome 16 (2024) no. 4, pp. 21-39
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider Hilbert spaces of entire functions
\begin{equation*}
P_\beta (D)=\left  \{F\in H(\mathbb{C}):\ \|F\|^2:=\int\limits_0^{2\pi }\int\limits_0^\infty \frac {|F(re^{i\varphi })|^2drd\Delta (\varphi)}{K(re^{i\varphi })r^{2\beta }}\infty \right \},
\end{equation*}
where $D$ is a bounded convex domain on the complex plane,
\begin{align*}
(\lambda)=\|e^{\lambda z}\|^2_{L_2(D)}=\int\limits_D|e^{\lambda z}|^2dm(z),\quad \lambda \in \mathbb{C},
\\
(\varphi)=\max_{z\in \overline D} \mathrm{Re}\, ze^{i\varphi },\quad \varphi \in [0;2\pi ],
\\
\Delta (\varphi)=h(\varphi)+\int\limits_{0}^\varphi h(\theta)d\theta,\quad \varphi \in [0;2\pi ].
\end{align*}
The interest to these spaces is motivated by the fact that $P_0(D)$ is the space of Laplace transforms of linear continuous functionals on the Bergman space $B_2(D)$, while $P_{\frac 12}(D)$ is the space of Laplace transforms of linear continuous functionals on the Smirnov space  $E_2(D)$.  In the paper for the parameters $\beta \in \left (-\frac 12;\frac 32\right)$ we provide a complete description of the Borel transforms of  functions in   spaces  $P_\beta (D)$.  In this way, the Bergman and Smirnov spaces are
embedded into a scale of Hilbert spaces and, in the authors' opinion, this could allow
to apply the theory of Hilbert scales for studying the problems in these spaces.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
scale of Hilbert space, Bergman space, Smirnov space.
Mots-clés : Borel transform
                    
                  
                
                
                Mots-clés : Borel transform
@article{UFA_2024_16_4_a2,
     author = {K. P. Isaev and R. S. Yulmukhametov},
     title = {Borel transforms of functions  in  parametrized family of {Hilbert} spaces},
     journal = {Ufa mathematical journal},
     pages = {21--39},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2024_16_4_a2/}
}
                      
                      
                    TY - JOUR AU - K. P. Isaev AU - R. S. Yulmukhametov TI - Borel transforms of functions in parametrized family of Hilbert spaces JO - Ufa mathematical journal PY - 2024 SP - 21 EP - 39 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2024_16_4_a2/ LA - en ID - UFA_2024_16_4_a2 ER -
K. P. Isaev; R. S. Yulmukhametov. Borel transforms of functions in parametrized family of Hilbert spaces. Ufa mathematical journal, Tome 16 (2024) no. 4, pp. 21-39. http://geodesic.mathdoc.fr/item/UFA_2024_16_4_a2/
