Mots-clés : Borel transform
@article{UFA_2024_16_4_a2,
author = {K. P. Isaev and R. S. Yulmukhametov},
title = {Borel transforms of functions in parametrized family of {Hilbert} spaces},
journal = {Ufa mathematical journal},
pages = {21--39},
year = {2024},
volume = {16},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2024_16_4_a2/}
}
K. P. Isaev; R. S. Yulmukhametov. Borel transforms of functions in parametrized family of Hilbert spaces. Ufa mathematical journal, Tome 16 (2024) no. 4, pp. 21-39. http://geodesic.mathdoc.fr/item/UFA_2024_16_4_a2/
[1] B.Ya. Levin, Yu.I. Lyubarskii, “Interpolation by means of special classes of entire functions and related expansions in series of exponentials”, Math. USSR–Izv., 9:3 (1975), 621–662 | DOI | MR | Zbl
[2] V.I. Lutsenko, R.S. Yulmukhametov, “A generalization of the Paley — Wiener theorem to functionals on Smirnov spaces”, Proc. Steklov Inst. Math., 200 (1993), 271–280 | MR | Zbl
[3] K.P. Isaev, R.S. Yulmukhametov, “Laplace transforms of functionals on Bergman spaces”, Izv. Math., 68:1 (2004), 3–41 | DOI | DOI | MR | Zbl
[4] A. Borichev, Yu. Lyubarskii, “Riesz bases of reproducing kernels in Fock type spaces”, J. Inst. Math. Jussieu, 9:3 (2010), 449–461 | DOI | MR | Zbl
[5] A. Baranov, Yu. Belov, A. Borichev, “Fock type spaces with Riesz bases of reproducing kernels and de Branges spaces”, Stud. Math., 236:2 (2017), 127–142 | DOI | MR | Zbl
[6] K.P. Isaev, R.S. Yulmukhametov, “Unconditional bases in radial Hilbert spaces”, Izv. Math., 86:1 (2022), 150–168 | DOI | DOI | MR | Zbl
[7] K.P. Isaev, R.S. Yulmukhametov, “On a criterion for the existence of unconditional bases of reproducing kernels in Fock spaces with radial regular weight”, J. Math. Anal. Appl., 519:2 (2023), 126839, 17 pp. | DOI | MR | Zbl
[8] K.P. Isaev, A.V. Lutsenko, R.S. Yulmukhametov, “On a sufficient condition for the existence of unconditional bases of reproducing kernels in Fock type spaces with nonradial weights”, Anal. Math. Phys., 13:6 (2023), 83, 11 pp. | DOI | MR | Zbl
[9] V.I. Lutsenko, R.S. Yulmukhametov, “Generalization of the Paley — Wiener theorem in weighted spaces”, Math. Notes, 48:5 (1990), 1131–1136 | DOI | MR | Zbl | Zbl