On Zaremba problem for second–order linear elliptic equation with drift in case of limit exponent
Ufa mathematical journal, Tome 16 (2024) no. 4, pp. 1-11 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We establish the unique solvability of the Zaremba problem with the homogeneous Dirichlet and Neumann boundary conditions for an inhomogeneous linear second order second order equation in the divergence form with measurable coefficients and lower order terms. The problem is considered in a bounded strictly Lipschitz domain. We suppose that the domain is contained in an $n$–dimensional Euclidean space, where $n\ge2$. If $n>2$, then the lower coefficient belong to the Lebesgue space with the limiting summability exponent from the Sobolev embedding theorem. If $n=2$, then the lower coefficients are summable at each power exceeding two. Apart of the unique solvability, we establish an energy estimate for the solution.
Keywords: Zaremba problem, solvability, drift, limiting exponent, capacity.
@article{UFA_2024_16_4_a0,
     author = {M. D. Aliyev and Yu. A. Alkhutov and G. A. Chechkin},
     title = {On {Zaremba} problem for second{\textendash}order linear elliptic equation with drift in case of limit exponent},
     journal = {Ufa mathematical journal},
     pages = {1--11},
     year = {2024},
     volume = {16},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2024_16_4_a0/}
}
TY  - JOUR
AU  - M. D. Aliyev
AU  - Yu. A. Alkhutov
AU  - G. A. Chechkin
TI  - On Zaremba problem for second–order linear elliptic equation with drift in case of limit exponent
JO  - Ufa mathematical journal
PY  - 2024
SP  - 1
EP  - 11
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2024_16_4_a0/
LA  - en
ID  - UFA_2024_16_4_a0
ER  - 
%0 Journal Article
%A M. D. Aliyev
%A Yu. A. Alkhutov
%A G. A. Chechkin
%T On Zaremba problem for second–order linear elliptic equation with drift in case of limit exponent
%J Ufa mathematical journal
%D 2024
%P 1-11
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2024_16_4_a0/
%G en
%F UFA_2024_16_4_a0
M. D. Aliyev; Yu. A. Alkhutov; G. A. Chechkin. On Zaremba problem for second–order linear elliptic equation with drift in case of limit exponent. Ufa mathematical journal, Tome 16 (2024) no. 4, pp. 1-11. http://geodesic.mathdoc.fr/item/UFA_2024_16_4_a0/

[1] V. Maz'ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Springer-Verlag, Berlin, 2011 | MR | Zbl

[2] G. Stampacchia, “Le probléme de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus”, Ann. Inst. Fourier, 15:1 (1965), 189–257 | DOI | MR | Zbl

[3] D.E. Apushkinskaya, A.I. Nazarov, “The normal derivative lemma and surrounding issues”, Russ. Math. Surv., 77:2 (2022), 189–249 | DOI | DOI | MR | MR | Zbl

[4] S.L. Sobolev, “Some applications of functional analysis in mathematical physics”, American Mathematical Society, Providence, RI, 1991 | MR | MR | Zbl

[5] P.D. Lax, A. Milgram, “Parabolic equations”, Ann. Math. Stud., 33 (1954), 167–190 | MR | Zbl

[6] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer–Verlag, Berlin, 1983 | MR | MR | Zbl

[7] M.E. Pérez, G.A. Chechkin, E.I. Yablokova, “On eigenvibrations of a body with “light” concentrated masses on a surface”, Russ. Math. Surv., 57:6 (2002), 1240–1242 | DOI | DOI | MR | Zbl

[8] G.A. Chechkin, “On the vibration of a partially fastened membrane with many “light” concentrated masses on the boundary”, C. R., Méc., Acad. Sci. Paris, 332:12 (2004), 949–954 | Zbl

[9] G.A. Chechkin, Yu.O. Koroleva, L.-E. Persson, “On the precise asymptotics of the constant in Friedrich's inequality for functions vanishing on the part of the boundary with microinhomogeneous structure”, J. Inequal. Appl., 2007 (2007), 34138, 13 pp. | DOI | MR | Zbl

[10] Yu.A. Alkhutov, G.A. Chechkin, “Increased Integrability of the gradient of the solution to the Zaremba problem for the Poisson equation”, Dokl. Math., 103:2 (2021), 69–71 | DOI | DOI | MR | Zbl

[11] Yu.A. Alkhutov, G.A. Chechkin, “The Meyer's estimate of solutions to Zaremba problem for second-order elliptic equations in divergent form”, C. R. Méc., 349:2 (2021), 299–304 | DOI

[12] Yu.A. Alkhutov, G.A. Chechkin, V.G. Maz'ya, “Boyarsky-Meyers estimate for solutions to Zaremba problem”, Arch. Ration. Mech. Anal., 245:2 (2022), 1197–1211 | DOI | MR | Zbl

[13] G.A. Chechkin, T.P. Chechkina, “The Boyarsky — Meyers estimate for second order elliptic equations in divergence form. Two spatial examples”, J. Math. Sci., New York, 268:4 (2022), 523–534 | DOI | MR | Zbl