@article{UFA_2024_16_4_a0,
author = {M. D. Aliyev and Yu. A. Alkhutov and G. A. Chechkin},
title = {On {Zaremba} problem for second{\textendash}order linear elliptic equation with drift in case of limit exponent},
journal = {Ufa mathematical journal},
pages = {1--11},
year = {2024},
volume = {16},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2024_16_4_a0/}
}
TY - JOUR AU - M. D. Aliyev AU - Yu. A. Alkhutov AU - G. A. Chechkin TI - On Zaremba problem for second–order linear elliptic equation with drift in case of limit exponent JO - Ufa mathematical journal PY - 2024 SP - 1 EP - 11 VL - 16 IS - 4 UR - http://geodesic.mathdoc.fr/item/UFA_2024_16_4_a0/ LA - en ID - UFA_2024_16_4_a0 ER -
%0 Journal Article %A M. D. Aliyev %A Yu. A. Alkhutov %A G. A. Chechkin %T On Zaremba problem for second–order linear elliptic equation with drift in case of limit exponent %J Ufa mathematical journal %D 2024 %P 1-11 %V 16 %N 4 %U http://geodesic.mathdoc.fr/item/UFA_2024_16_4_a0/ %G en %F UFA_2024_16_4_a0
M. D. Aliyev; Yu. A. Alkhutov; G. A. Chechkin. On Zaremba problem for second–order linear elliptic equation with drift in case of limit exponent. Ufa mathematical journal, Tome 16 (2024) no. 4, pp. 1-11. http://geodesic.mathdoc.fr/item/UFA_2024_16_4_a0/
[1] V. Maz'ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Springer-Verlag, Berlin, 2011 | MR | Zbl
[2] G. Stampacchia, “Le probléme de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus”, Ann. Inst. Fourier, 15:1 (1965), 189–257 | DOI | MR | Zbl
[3] D.E. Apushkinskaya, A.I. Nazarov, “The normal derivative lemma and surrounding issues”, Russ. Math. Surv., 77:2 (2022), 189–249 | DOI | DOI | MR | MR | Zbl
[4] S.L. Sobolev, “Some applications of functional analysis in mathematical physics”, American Mathematical Society, Providence, RI, 1991 | MR | MR | Zbl
[5] P.D. Lax, A. Milgram, “Parabolic equations”, Ann. Math. Stud., 33 (1954), 167–190 | MR | Zbl
[6] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer–Verlag, Berlin, 1983 | MR | MR | Zbl
[7] M.E. Pérez, G.A. Chechkin, E.I. Yablokova, “On eigenvibrations of a body with “light” concentrated masses on a surface”, Russ. Math. Surv., 57:6 (2002), 1240–1242 | DOI | DOI | MR | Zbl
[8] G.A. Chechkin, “On the vibration of a partially fastened membrane with many “light” concentrated masses on the boundary”, C. R., Méc., Acad. Sci. Paris, 332:12 (2004), 949–954 | Zbl
[9] G.A. Chechkin, Yu.O. Koroleva, L.-E. Persson, “On the precise asymptotics of the constant in Friedrich's inequality for functions vanishing on the part of the boundary with microinhomogeneous structure”, J. Inequal. Appl., 2007 (2007), 34138, 13 pp. | DOI | MR | Zbl
[10] Yu.A. Alkhutov, G.A. Chechkin, “Increased Integrability of the gradient of the solution to the Zaremba problem for the Poisson equation”, Dokl. Math., 103:2 (2021), 69–71 | DOI | DOI | MR | Zbl
[11] Yu.A. Alkhutov, G.A. Chechkin, “The Meyer's estimate of solutions to Zaremba problem for second-order elliptic equations in divergent form”, C. R. Méc., 349:2 (2021), 299–304 | DOI
[12] Yu.A. Alkhutov, G.A. Chechkin, V.G. Maz'ya, “Boyarsky-Meyers estimate for solutions to Zaremba problem”, Arch. Ration. Mech. Anal., 245:2 (2022), 1197–1211 | DOI | MR | Zbl
[13] G.A. Chechkin, T.P. Chechkina, “The Boyarsky — Meyers estimate for second order elliptic equations in divergence form. Two spatial examples”, J. Math. Sci., New York, 268:4 (2022), 523–534 | DOI | MR | Zbl