Categorical criterion for existence of universal $C^*$–algebras
Ufa mathematical journal, Tome 16 (2024) no. 3, pp. 113-124 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We deal with categories, which determine universal $C^*$–algebras. These categories are called the compact $C^*$–relations. They were introduced by T.A. Loring. Given a set $X,$ a compact $C^*$–relation on $X$ is a category, the objects of which are functions from $X$ to $C^*$–algebras, and morphisms are $\ast$–homomorphisms of $C^*$–algebras making the appropriate triangle diagrams commute. Moreover, these functions and $\ast$–homomorphisms satisfy certain axioms. In this article, we prove that every compact $C^*$–relation is both complete and cocomplete. As an application of the completeness of compact $C^*$–relations, we obtain the criterion for the existence of universal $C^*$–algebras.
Keywords: compact $C^*$–relation, complete category, universal $C^*$–algebra.
@article{UFA_2024_16_3_a9,
     author = {R. N. Gumerov and E. V. Lipacheva and K. A. Shishkin},
     title = {Categorical criterion for existence of universal $C^*${\textendash}algebras},
     journal = {Ufa mathematical journal},
     pages = {113--124},
     year = {2024},
     volume = {16},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a9/}
}
TY  - JOUR
AU  - R. N. Gumerov
AU  - E. V. Lipacheva
AU  - K. A. Shishkin
TI  - Categorical criterion for existence of universal $C^*$–algebras
JO  - Ufa mathematical journal
PY  - 2024
SP  - 113
EP  - 124
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a9/
LA  - en
ID  - UFA_2024_16_3_a9
ER  - 
%0 Journal Article
%A R. N. Gumerov
%A E. V. Lipacheva
%A K. A. Shishkin
%T Categorical criterion for existence of universal $C^*$–algebras
%J Ufa mathematical journal
%D 2024
%P 113-124
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a9/
%G en
%F UFA_2024_16_3_a9
R. N. Gumerov; E. V. Lipacheva; K. A. Shishkin. Categorical criterion for existence of universal $C^*$–algebras. Ufa mathematical journal, Tome 16 (2024) no. 3, pp. 113-124. http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a9/

[1] B. Blackadar, “Shape theory for $C^*$–algebras”, Math. Scand., 56 (1985), 249–275 | DOI | MR | Zbl

[2] N.C. Phillips, “Inverse limits of $C^*$–algebras and applications”, Operator Algebras and Applications, v. 1, Cambridge Univ. Press, Cambridge, 1989, 127–185 | DOI | MR

[3] T.A. Loring, Lifting solutions to perturbing problems in $C^*$–algebras, American Mathematical Society, Providence, RI, 1997 | MR | Zbl

[4] D. Hadwin, L. Kaonga, B. Mathes, “Noncommutative continuous functions”, J. Korean Math. Soc., 40:5 (2003), 789–830 | DOI | MR | Zbl

[5] T.A. Loring, “$C^*$–algebra relations”, Math. Scand., 107:1 (2010), 43–72 | DOI | MR | Zbl

[6] W. Grilliette, Formalizing Categorical and Algebraic Constructions in Operator Theory, PhD thesis, University of Nebraska, Lincoln, 2011 | MR

[7] Sib. Math. J., 59:1 (2018), 73–84 | DOI | MR | Zbl

[8] R.N. Gumerov, “Inductive limits for systems of Toeplitz algebras”, Lobachevskii J. Math., 40:4 (2019), 469–478 | DOI | MR | Zbl

[9] R.N. Gumerov, “Inductive sequences of Toeplitz algebras and limit automorphisms”, Lobachevskii J. Math., 41:4 (2020), 637–643 | DOI | MR | Zbl

[10] R.N. Gumerov, E.V. Lipacheva, “Inductive Systems of $C^*$–algebras over posets: a survey”, Lobachevskii J. Math., 41:4 (2020), 644–654 | DOI | MR | Zbl

[11] Proc. Steklov Inst. Math., 313 (2021), 60–69 | DOI | DOI | MR | Zbl

[12] R.N. Gumerov, E.V. Lipacheva, “Automorphisms of the limits for the direct sequences of the Toeplitz — Cuntz algebras”, J. Math. Anal. Appl., 533:2 (2024), 127991 | DOI | MR | Zbl

[13] I.S. Berdnikov, R.N. Gumerov, E.V. Lipacheva, K.A. Shishkin, “On $C^\ast$–algebra and $\ast$–polynomial relations”, Lobachevskii J. Math., 44:6 (2023), 1990–1997 | DOI | MR | Zbl

[14] J. Cuntz, “Simple $C^*$–algebras generated by isometries”, Commun. Math. Phys., 57 (1977), 173–185 | DOI | MR | Zbl

[15] J. Cuntz, “K–theory for certain $C^*$–algebras”, Ann. Math. (2), 113:1 (1981), 181–197 | DOI | MR | Zbl

[16] M. Khoshkam, J. Tavakoli, “Categorical constructions in $C^*$–algebra theory”, J. Aust. Math. Soc., 73:1 (2002), 97-113 | DOI | MR | Zbl

[17] S. Mac Lane, Categories for the Working Mathematician, Springer, New York, NY, 1998 | MR | Zbl