@article{UFA_2024_16_3_a9,
author = {R. N. Gumerov and E. V. Lipacheva and K. A. Shishkin},
title = {Categorical criterion for existence of universal $C^*${\textendash}algebras},
journal = {Ufa mathematical journal},
pages = {113--124},
year = {2024},
volume = {16},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a9/}
}
TY - JOUR AU - R. N. Gumerov AU - E. V. Lipacheva AU - K. A. Shishkin TI - Categorical criterion for existence of universal $C^*$–algebras JO - Ufa mathematical journal PY - 2024 SP - 113 EP - 124 VL - 16 IS - 3 UR - http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a9/ LA - en ID - UFA_2024_16_3_a9 ER -
R. N. Gumerov; E. V. Lipacheva; K. A. Shishkin. Categorical criterion for existence of universal $C^*$–algebras. Ufa mathematical journal, Tome 16 (2024) no. 3, pp. 113-124. http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a9/
[1] B. Blackadar, “Shape theory for $C^*$–algebras”, Math. Scand., 56 (1985), 249–275 | DOI | MR | Zbl
[2] N.C. Phillips, “Inverse limits of $C^*$–algebras and applications”, Operator Algebras and Applications, v. 1, Cambridge Univ. Press, Cambridge, 1989, 127–185 | DOI | MR
[3] T.A. Loring, Lifting solutions to perturbing problems in $C^*$–algebras, American Mathematical Society, Providence, RI, 1997 | MR | Zbl
[4] D. Hadwin, L. Kaonga, B. Mathes, “Noncommutative continuous functions”, J. Korean Math. Soc., 40:5 (2003), 789–830 | DOI | MR | Zbl
[5] T.A. Loring, “$C^*$–algebra relations”, Math. Scand., 107:1 (2010), 43–72 | DOI | MR | Zbl
[6] W. Grilliette, Formalizing Categorical and Algebraic Constructions in Operator Theory, PhD thesis, University of Nebraska, Lincoln, 2011 | MR
[7] Sib. Math. J., 59:1 (2018), 73–84 | DOI | MR | Zbl
[8] R.N. Gumerov, “Inductive limits for systems of Toeplitz algebras”, Lobachevskii J. Math., 40:4 (2019), 469–478 | DOI | MR | Zbl
[9] R.N. Gumerov, “Inductive sequences of Toeplitz algebras and limit automorphisms”, Lobachevskii J. Math., 41:4 (2020), 637–643 | DOI | MR | Zbl
[10] R.N. Gumerov, E.V. Lipacheva, “Inductive Systems of $C^*$–algebras over posets: a survey”, Lobachevskii J. Math., 41:4 (2020), 644–654 | DOI | MR | Zbl
[11] Proc. Steklov Inst. Math., 313 (2021), 60–69 | DOI | DOI | MR | Zbl
[12] R.N. Gumerov, E.V. Lipacheva, “Automorphisms of the limits for the direct sequences of the Toeplitz — Cuntz algebras”, J. Math. Anal. Appl., 533:2 (2024), 127991 | DOI | MR | Zbl
[13] I.S. Berdnikov, R.N. Gumerov, E.V. Lipacheva, K.A. Shishkin, “On $C^\ast$–algebra and $\ast$–polynomial relations”, Lobachevskii J. Math., 44:6 (2023), 1990–1997 | DOI | MR | Zbl
[14] J. Cuntz, “Simple $C^*$–algebras generated by isometries”, Commun. Math. Phys., 57 (1977), 173–185 | DOI | MR | Zbl
[15] J. Cuntz, “K–theory for certain $C^*$–algebras”, Ann. Math. (2), 113:1 (1981), 181–197 | DOI | MR | Zbl
[16] M. Khoshkam, J. Tavakoli, “Categorical constructions in $C^*$–algebra theory”, J. Aust. Math. Soc., 73:1 (2002), 97-113 | DOI | MR | Zbl
[17] S. Mac Lane, Categories for the Working Mathematician, Springer, New York, NY, 1998 | MR | Zbl