Categorical criterion for existence of universal $C^*$--algebras
Ufa mathematical journal, Tome 16 (2024) no. 3, pp. 113-124
Voir la notice de l'article provenant de la source Math-Net.Ru
We deal with categories, which determine universal $C^*$–algebras. These categories are called the compact $C^*$–relations. They were introduced by T.A. Loring. Given a set $X,$ a compact $C^*$–relation on $X$ is a category, the objects of which are functions from $X$ to $C^*$–algebras, and morphisms are $\ast$–homomorphisms of $C^*$–algebras making the appropriate triangle diagrams commute. Moreover, these functions and $\ast$–homomorphisms satisfy certain axioms. In this article, we prove that every compact $C^*$–relation is both complete and cocomplete. As an application of the completeness of compact $C^*$–relations, we obtain the criterion for the existence of universal $C^*$–algebras.
Keywords:
compact $C^*$–relation, complete category, universal $C^*$–algebra.
@article{UFA_2024_16_3_a9,
author = {R. N. Gumerov and E. V. Lipacheva and K. A. Shishkin},
title = {Categorical criterion for existence of universal $C^*$--algebras},
journal = {Ufa mathematical journal},
pages = {113--124},
publisher = {mathdoc},
volume = {16},
number = {3},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a9/}
}
TY - JOUR AU - R. N. Gumerov AU - E. V. Lipacheva AU - K. A. Shishkin TI - Categorical criterion for existence of universal $C^*$--algebras JO - Ufa mathematical journal PY - 2024 SP - 113 EP - 124 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a9/ LA - en ID - UFA_2024_16_3_a9 ER -
R. N. Gumerov; E. V. Lipacheva; K. A. Shishkin. Categorical criterion for existence of universal $C^*$--algebras. Ufa mathematical journal, Tome 16 (2024) no. 3, pp. 113-124. http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a9/