@article{UFA_2024_16_3_a8,
author = {S. G. Khaliullin},
title = {Extreme point of completely convex state structure},
journal = {Ufa mathematical journal},
pages = {107--112},
year = {2024},
volume = {16},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a8/}
}
S. G. Khaliullin. Extreme point of completely convex state structure. Ufa mathematical journal, Tome 16 (2024) no. 3, pp. 107-112. http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a8/
[1] G.W. Mackey, The Mathematical Foundations of Quantum Mechanics, W.A. Benjamin, Inc., New York–Amsterdam, 1963 | MR | MR | Zbl
[2] S. Gudder, Stochastic Methods in Quantum Mechanics, Dover Publications, 2014 | MR
[3] E.B. Davies, Quantum Theory of Open Systems, Academic Press, London, 1976 | MR | Zbl
[4] I. Namioka, Partially ordered linear topological spaces, Mem. Amer. Math. Soc., 24, 1957 | MR | Zbl
[5] D.H. Mushtari, S.G. Haliullin, “Linear spaces with a probability meassure, ultraproducts and contiguity”, Lobachevskii J Math., 35:2 (2014), 138–146 | DOI | MR | Zbl
[6] S.G. Haliullin, “Ultraproducts of quantum mechanical systems”, Ufa Math. J., 14:2 (2022), 94–100 | MR | Zbl
[7] B. Mielnik, “Generalized quantum mechanics”, Commun. Math. Phys., 37 (1974), 221–256 | DOI | MR