On vector derivative nonlinear Schr\"odinger equation
Ufa mathematical journal, Tome 16 (2024) no. 3, pp. 92-106
Voir la notice de l'article provenant de la source Math-Net.Ru
We propose a sequence of Lax pairs, the compatibility conditions of which are integrable vector nonlinear equations. The first equations in this hierarchy are vector Kaup — Newell, Chen — Lee — Liu, Gerdjikov — Ivanov integrable nonlinear equations. The type of vector equation depends on an additional parameter $\alpha$. The proposed form of the vector Kaup — Newell equation has slight differences in comparison with the classical form. We show that the evolution of simplest
nontrivial solutions of these equations is a composition of the evolutions of length and orientations of solution. We study properties of spectral curves of simplest nontrivial solutions the vector equations in the constructed hierarchy.
Keywords:
integrable nonlinear equation, Kaup — Newell equation,
Chen — Lee — Liu equation, multiphase equation, spectral curve.
Mots-clés : Gerdjikov — Ivanov equation
Mots-clés : Gerdjikov — Ivanov equation
@article{UFA_2024_16_3_a7,
author = {A. O. Smirnov and S. D. Shilovsky},
title = {On vector derivative nonlinear {Schr\"odinger} equation},
journal = {Ufa mathematical journal},
pages = {92--106},
publisher = {mathdoc},
volume = {16},
number = {3},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a7/}
}
A. O. Smirnov; S. D. Shilovsky. On vector derivative nonlinear Schr\"odinger equation. Ufa mathematical journal, Tome 16 (2024) no. 3, pp. 92-106. http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a7/