On vector derivative nonlinear Schr\"odinger equation
Ufa mathematical journal, Tome 16 (2024) no. 3, pp. 92-106

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a sequence of Lax pairs, the compatibility conditions of which are integrable vector nonlinear equations. The first equations in this hierarchy are vector Kaup — Newell, Chen — Lee — Liu, Gerdjikov — Ivanov integrable nonlinear equations. The type of vector equation depends on an additional parameter $\alpha$. The proposed form of the vector Kaup — Newell equation has slight differences in comparison with the classical form. We show that the evolution of simplest nontrivial solutions of these equations is a composition of the evolutions of length and orientations of solution. We study properties of spectral curves of simplest nontrivial solutions the vector equations in the constructed hierarchy.
Keywords: integrable nonlinear equation, Kaup — Newell equation, Chen — Lee — Liu equation, multiphase equation, spectral curve.
Mots-clés : Gerdjikov — Ivanov equation
@article{UFA_2024_16_3_a7,
     author = {A. O. Smirnov and S. D. Shilovsky},
     title = {On vector derivative nonlinear {Schr\"odinger} equation},
     journal = {Ufa mathematical journal},
     pages = {92--106},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a7/}
}
TY  - JOUR
AU  - A. O. Smirnov
AU  - S. D. Shilovsky
TI  - On vector derivative nonlinear Schr\"odinger equation
JO  - Ufa mathematical journal
PY  - 2024
SP  - 92
EP  - 106
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a7/
LA  - en
ID  - UFA_2024_16_3_a7
ER  - 
%0 Journal Article
%A A. O. Smirnov
%A S. D. Shilovsky
%T On vector derivative nonlinear Schr\"odinger equation
%J Ufa mathematical journal
%D 2024
%P 92-106
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a7/
%G en
%F UFA_2024_16_3_a7
A. O. Smirnov; S. D. Shilovsky. On vector derivative nonlinear Schr\"odinger equation. Ufa mathematical journal, Tome 16 (2024) no. 3, pp. 92-106. http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a7/