On vector derivative nonlinear Schrödinger equation
Ufa mathematical journal, Tome 16 (2024) no. 3, pp. 92-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a sequence of Lax pairs, the compatibility conditions of which are integrable vector nonlinear equations. The first equations in this hierarchy are vector Kaup — Newell, Chen — Lee — Liu, Gerdjikov — Ivanov integrable nonlinear equations. The type of vector equation depends on an additional parameter $\alpha$. The proposed form of the vector Kaup — Newell equation has slight differences in comparison with the classical form. We show that the evolution of simplest nontrivial solutions of these equations is a composition of the evolutions of length and orientations of solution. We study properties of spectral curves of simplest nontrivial solutions the vector equations in the constructed hierarchy.
Keywords: integrable nonlinear equation, Kaup — Newell equation, Chen — Lee — Liu equation, multiphase equation, spectral curve.
Mots-clés : Gerdjikov — Ivanov equation
@article{UFA_2024_16_3_a7,
     author = {A. O. Smirnov and S. D. Shilovsky},
     title = {On vector derivative nonlinear {Schr\"odinger} equation},
     journal = {Ufa mathematical journal},
     pages = {92--106},
     year = {2024},
     volume = {16},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a7/}
}
TY  - JOUR
AU  - A. O. Smirnov
AU  - S. D. Shilovsky
TI  - On vector derivative nonlinear Schrödinger equation
JO  - Ufa mathematical journal
PY  - 2024
SP  - 92
EP  - 106
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a7/
LA  - en
ID  - UFA_2024_16_3_a7
ER  - 
%0 Journal Article
%A A. O. Smirnov
%A S. D. Shilovsky
%T On vector derivative nonlinear Schrödinger equation
%J Ufa mathematical journal
%D 2024
%P 92-106
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a7/
%G en
%F UFA_2024_16_3_a7
A. O. Smirnov; S. D. Shilovsky. On vector derivative nonlinear Schrödinger equation. Ufa mathematical journal, Tome 16 (2024) no. 3, pp. 92-106. http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a7/

[1] A.O. Smirnov, V.S. Gerdjikov, V.B. Matveev, “From generalized Fourier transforms to spectral curves for the Manakov hierarchy. II. Spectral curves for the Manakov hierarchy”, Eur. Phys. J. Plus, 135:561 (2020), 20 pp.

[2] G. Zhang, L. Ling, Zh. Yan, “Multi-component nonlinear Schrödinger equations with nonzero boundary conditions: Higher-order vector Peregrine solitons and asymptotic estimates”, J. Nonlinear Sci., 31:81 (2021), 52 pp. | MR

[3] J. Pu, Y. Chen, “Data-driven vector localized waves and parameters discovery for Manakov system using deep learning approach”, Chaos, Solitons Fractals, 160 (2022), 112182 | DOI | MR

[4] D. Sinha, “Integrable local and non-local vector non-linear Schrödinger equation with balanced loss and gain”, Phys. Lett. A, 448 (2022), 128338, 7 pp. | DOI | MR | Zbl

[5] A. Gelash, A. Raskovalov, “Vector breathers in the Manakov system”, Stud. Appl. Math., 150:3 (2023), 841–882 | DOI | MR | Zbl

[6] G. Zhang, P. Huang, B.-F. Feng, C. Wu, “Rogue waves and their patterns in the vector nonlinear Schrödinger equation”, J. Nonlinear Sci., 33:116 (2023), 64 pp. | MR

[7] S. Ghosh, P.K. Ghosh, “Solvable limits of a class of generalized vector nonlocal nonlinear Schrödinger equation with balanced loss-gain”, Phys. Scr., 98:11 (2023), 115214 | DOI

[8] D. Snee, Y.-P. Ma, “Domain walls and vector solitons in the coupled nonlinear Schrödinger equation”, J. Phys. A, Math. Theor., 57:3 (2024), 035702, 25 pp. | DOI | MR | Zbl

[9] J.-V. Goossens, M.I. Yousefi, Y. Jaouën, H. Haffermann, “Polarization-Division Multiplexing Based on the Nonlinear Fourier Transform”, Opt. Express, 25:22 (2017), 26437–26452 | DOI

[10] S. Gaiarin, A.M. Perego, E.P. da Silva, F. Da Ros, D. Zibar, “Dual polarization nonlinear Fourier transform-based optical communication system”, Optica, 5:3 (2018), 263–270 | DOI

[11] S. Civelli, S.K. Turitsyn, M. Secondini, J.E. Prilepsky, “Polarization-multiplexed nonlinear inverse synthesis with standard and reduced-complexity NFT processing”, Opt. Express, 26:13 (2018), 17360–17377 | DOI

[12] S. Gaiarin, A.M. Perego, E.P. da Silva, F. Da Ros, D. Zibar, “Experimental demonstration of nonlinear frequency division multiplexing transmission with neural network receiver”, Journal of Lightwave Technology, 38:23 (2020), 6465–6473 | DOI

[13] B.J. Puttnam, G. Rademacher, R.S. Luis, “Space-division multiplexing for optical fiber communications”, Optica, 8:9 (2021), 1186-1203 | DOI

[14] H.C. Morris, R.K. Dodd, “The two component derivative nonlinear Schrödinger equation”, Phys. Scr., 20:3-4 (1979), 505–508 | DOI | MR | Zbl

[15] A. Fordy, “Derivative nonlinear Schrödinger equations and Hermitian symmetric spaces”, J. Phys. A, 17 (1984), 1235–1245 | DOI | MR | Zbl

[16] T. Tsuchida, M. Wadati, “New integrable systems of derivative nonlinear Schrödinger equations with multiple components”, Phys. Lett., A, 257:1-2 (1999), 53–64 | DOI | MR | Zbl

[17] T. Xu, B. Tian, C. Zhang, X.-H. Meng, X. Lu, “Alfvén solitons in the coupled derivative nonlinear Schrödinger system with symbolic computation”, J. Phys. A, Math. Theor., 42:41 (2009), 415201, 14 pp. | DOI | MR | Zbl

[18] L. Ling, Q.P. Liu, “Darboux transformation for a two-component derivative nonlinear Schrödinger equation”, J. Phys. A, Math. Theor., 43:43 (2010), 434023, 11 pp. | DOI | MR | Zbl

[19] B.L. Guo, L.M. Ling, “Riemann-Hilbert approach and N-soliton formula for coupled derivative Schrödinger equation”, J. Math. Phys., 53:7 (2012), 073506, 20 pp. | DOI | MR | Zbl

[20] H.N. Chan, B.A. Malomed, K.W. Chow, E. Ding, “Rogue waves for a system of coupled derivative nonlinear Schrödinger equations”, Phys. Rev. E, 93:1 (2016), 012217, 10 pp. | DOI | MR

[21] L. Guo, L. Wang, Y. Cheng, J. He, “Higher-order rogue waves and modulation instability of the two-component derivative nonlinear Schrödinger equation”, Commun. Nonlinear Sci. Numer. Simul., 79 (2019), 104915, 20 pp. | DOI | MR | Zbl

[22] J. Wu, “Integrability aspects and multi-soliton solutions of a new coupled Gerdjikov-Ivanov derivative nonlinear Schrödinger equation”, Nonlinear Dyn., 96:1 (2019), 789–800 | DOI | Zbl

[23] A.O. Smirnov, E.A. Frolov, L.L. Dmitrieva, “On a hierarchy of vector derivative nonlinear Schrödinger equations”, Symmetry, 16:1 (2024), 60 | DOI | MR

[24] A. Kundu, “Landau-Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger-type equations”, J. Math. Phys., 25:12 (1984), 3433–3438 | DOI | MR

[25] A. Kundu, “Integrable Hierarchy of Higher Nonlinear Schrödinger Type Equations”, SIGMA, Symmetry Integrability Geom. Methods Appl., 2 (2006), 078, 12 pp. | MR | Zbl

[26] A.O. Smirnov, A.A. Caplieva, “Vector form of Kundu-Eckhaus equation and its simplest solutions”, Ufim. mat. zh., 15:3 (2023), 151–166 | MR | Zbl

[27] B.A. Dubrovin, “Matrix finite–zone operators”, J. Soviet Math., 28:1 (1985), 20–50 | DOI | Zbl

[28] A.O. Smirnov, “Spectral curves for the derivative nonlinear Schrödinger equations”, Symmetry, 13:7 (2021), 1203, 18 pp. | DOI

[29] D. Rajeswari, A.S. Raja, S. Selvendran, “Design and analysis of polarization splitter based on dual-core photonic crystal fiber”, Optik, 144 (2017), 15–21 | DOI

[30] N. Chen, X. Ding, L. Wang, Y. Xiao, W. Guo, Y. Huang, L. Guo, “Broadband Polarization Beam Splitter Based on Silicon Dual-Core Photonic Crystal Fiber with Gold Layers Operating in Mid-Infrared Band”, Plasmonics, 19 (2024), 1939–1949 | DOI

[31] A.O. Smirnov, E.A. Frolov, “On a method for constructing solutions to equations of nonlinear optics”, Wave Electronics and Its Application in Information and Telecommunication Systems, Institute of Electrical and Electronics Engineers (IEEE), St. Petersburg, 2022, 448–451

[32] M. Wadati, K. Sogo, “Gauge transformations in soliton theory”, J. Phys. Soc. Jpn., 52 (1983), 394–398 | DOI | MR

[33] A. Kundu, “Exact solutions to higher-order nonlinear equations through gauge transformation”, Physica D, 25 (1987), 399–406 | DOI | MR | Zbl

[34] T. Tsuchida, M. Wadati, “Complete integrability of derivative nonlinear Schrödinger-type equations”, Inverse Probl., 15:5 (1999), 1363–1373 | DOI | MR | Zbl

[35] B. Yang, J. Chen, J. Yang, “Rogue Waves in the Generalized Derivative Nonlinear Schrödinger Equations”, J. Nonlinear Sci., 30:6 (2020), 3027–3056 | DOI | MR | Zbl

[36] A.L. Delitsyn, “Fast algorithms for solving the inverse scattering problem for the Zakharov — Shabat system of equations and their applications”, Math. Notes, 112:2 (2022), 199–214 | DOI | DOI | MR | Zbl