@article{UFA_2024_16_3_a6,
author = {A. I. Rakhimova},
title = {Hypercyclic and chaotic operators in space of functions analytic in domain},
journal = {Ufa mathematical journal},
pages = {84--91},
year = {2024},
volume = {16},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a6/}
}
A. I. Rakhimova. Hypercyclic and chaotic operators in space of functions analytic in domain. Ufa mathematical journal, Tome 16 (2024) no. 3, pp. 84-91. http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a6/
[1] G.R. MacLane, “Sequences of derivatives and normal families”, J. Anal. Math., 2 (1952), 72–87 | DOI | MR | Zbl
[2] G.D. Birkhoff, “Démonstration d'un théorème élémentaire sur les fonctions entières”, C. R., 189 (1929), 473–475
[3] G. Godefroy, J.H. Shapiro, “Operators with dense, invariant, cyclic vector manifolds”, J. Funct. Anal., 98:2 (1991), 229–269 | DOI | MR | Zbl
[4] R.M. Gethner, J. Shapiro, “Universal vectors for operators on spaces of holomorphic functions”, Proc. Amer. Math. Soc., 100:2 (1987), 281–288 | DOI | MR | Zbl
[5] V.E. Kim, “Hypercyclic and chaotic operators on spaces of entire functions”, Trudy Instituta matematiki VC UNC RAN, 1, 2008, 126–130 (in Russian)
[6] V.E. Kim, “Hypercyclicity and chaotic character of generalized convolution operators generated by Gel'fond-Leont'ev operators”, Math. Notes, 85:6 (2009), 807–813 | DOI | DOI | MR | Zbl
[7] K.–G. Grosse–Erdmann, A. Peris Manguillot, Linear chaos, Springer, Berlin, 2011 | MR | Zbl
[8] F. Bayart, E. Matheron, Dynamics of Linear Operators, Cambridge University Press, Cambridge, 2009 | MR | Zbl
[9] A.A. Lishanskii, “Existence of hypercyclic subspaces for Toeplitz operators”, Ufa Math J., 7:2 (2015), 102–105 | DOI | MR
[10] R.L. Devaney, An introduction to chaotic dynamical systems, Addison–Wesley Publishing Company, Inc., Redwood City, CA etc., 1989 | MR | Zbl
[11] J. Banks, J. Brooks, G. Cairns, G. Davis, P. Stacey, “On Devaney's definition of chaos”, Am. Math. Mon., 99:4 (1992), 332–334 | DOI | MR | Zbl
[12] F. Bayart, S. Grivaux, “Frequently hypercyclic operators”, Trans. Am. Math. Soc., 358:11 (2006), 5083–5117 | DOI | MR | Zbl
[13] A. Bonilla, K.–G. Grosse–Erdmann, “Frequently hypercyclic operators and vectors”, Ergodic Theory Dyn. Syst., 27:2 (2007), 383–404 | DOI | MR | Zbl
[14] V.V. Napalkov, Convolution equations in multidimensional spaces, Nauka, M., 1982 (in Russian)