Hypercyclic and chaotic operators in space of functions analytic in domain
Ufa mathematical journal, Tome 16 (2024) no. 3, pp. 84-91 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the space $H(\Omega)$ of functions analytic in a simply connected domain $\Omega$ in the complex plane equipped with the topology of uniform convergence on compact sets. We study issues on hypercyclicity, chaoticity and frequently hypercyclic for some operators in this space. We prove that a linear continuous operator in $H(\Omega),$ which commutes with the differentiation operator, is hypercyclic. We also show that this operator is chaotic and frequently hypercyclic in $H(\Omega).$
Keywords: space of analytic functions, hypercyclic operator, chaotic operator, frequently hypercyclic operator.
@article{UFA_2024_16_3_a6,
     author = {A. I. Rakhimova},
     title = {Hypercyclic and chaotic operators in space of functions analytic in domain},
     journal = {Ufa mathematical journal},
     pages = {84--91},
     year = {2024},
     volume = {16},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a6/}
}
TY  - JOUR
AU  - A. I. Rakhimova
TI  - Hypercyclic and chaotic operators in space of functions analytic in domain
JO  - Ufa mathematical journal
PY  - 2024
SP  - 84
EP  - 91
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a6/
LA  - en
ID  - UFA_2024_16_3_a6
ER  - 
%0 Journal Article
%A A. I. Rakhimova
%T Hypercyclic and chaotic operators in space of functions analytic in domain
%J Ufa mathematical journal
%D 2024
%P 84-91
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a6/
%G en
%F UFA_2024_16_3_a6
A. I. Rakhimova. Hypercyclic and chaotic operators in space of functions analytic in domain. Ufa mathematical journal, Tome 16 (2024) no. 3, pp. 84-91. http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a6/

[1] G.R. MacLane, “Sequences of derivatives and normal families”, J. Anal. Math., 2 (1952), 72–87 | DOI | MR | Zbl

[2] G.D. Birkhoff, “Démonstration d'un théorème élémentaire sur les fonctions entières”, C. R., 189 (1929), 473–475

[3] G. Godefroy, J.H. Shapiro, “Operators with dense, invariant, cyclic vector manifolds”, J. Funct. Anal., 98:2 (1991), 229–269 | DOI | MR | Zbl

[4] R.M. Gethner, J. Shapiro, “Universal vectors for operators on spaces of holomorphic functions”, Proc. Amer. Math. Soc., 100:2 (1987), 281–288 | DOI | MR | Zbl

[5] V.E. Kim, “Hypercyclic and chaotic operators on spaces of entire functions”, Trudy Instituta matematiki VC UNC RAN, 1, 2008, 126–130 (in Russian)

[6] V.E. Kim, “Hypercyclicity and chaotic character of generalized convolution operators generated by Gel'fond-Leont'ev operators”, Math. Notes, 85:6 (2009), 807–813 | DOI | DOI | MR | Zbl

[7] K.–G. Grosse–Erdmann, A. Peris Manguillot, Linear chaos, Springer, Berlin, 2011 | MR | Zbl

[8] F. Bayart, E. Matheron, Dynamics of Linear Operators, Cambridge University Press, Cambridge, 2009 | MR | Zbl

[9] A.A. Lishanskii, “Existence of hypercyclic subspaces for Toeplitz operators”, Ufa Math J., 7:2 (2015), 102–105 | DOI | MR

[10] R.L. Devaney, An introduction to chaotic dynamical systems, Addison–Wesley Publishing Company, Inc., Redwood City, CA etc., 1989 | MR | Zbl

[11] J. Banks, J. Brooks, G. Cairns, G. Davis, P. Stacey, “On Devaney's definition of chaos”, Am. Math. Mon., 99:4 (1992), 332–334 | DOI | MR | Zbl

[12] F. Bayart, S. Grivaux, “Frequently hypercyclic operators”, Trans. Am. Math. Soc., 358:11 (2006), 5083–5117 | DOI | MR | Zbl

[13] A. Bonilla, K.–G. Grosse–Erdmann, “Frequently hypercyclic operators and vectors”, Ergodic Theory Dyn. Syst., 27:2 (2007), 383–404 | DOI | MR | Zbl

[14] V.V. Napalkov, Convolution equations in multidimensional spaces, Nauka, M., 1982 (in Russian)