To question on embedding of reproducing kernel Hilbert spaces
Ufa mathematical journal, Tome 16 (2024) no. 3, pp. 74-83 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work we obtain necessary and sufficient conditions for embedding of one reproducing kernel Hilbert space into another reproducing kernel Hilbert space. The paper is a continuation of works by the authors, in which the problem on coincidence or equivalence of two reproducing kernel Hilbert spaces was studied. An important role is played by the consistence condition of two complete systems of functions with some linear continuous operator introduced by the authors before. The obtained results are demonstrated by particular examples.
Keywords: reproducing kernel Hilbert spaces, description of dual space, orthosimilar expansion systems, Bergman spaces.
@article{UFA_2024_16_3_a5,
     author = {V. V. Napalkov (jr.) and A. A. Nuyatov},
     title = {To question on embedding of reproducing kernel {Hilbert} spaces},
     journal = {Ufa mathematical journal},
     pages = {74--83},
     year = {2024},
     volume = {16},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a5/}
}
TY  - JOUR
AU  - V. V. Napalkov (jr.)
AU  - A. A. Nuyatov
TI  - To question on embedding of reproducing kernel Hilbert spaces
JO  - Ufa mathematical journal
PY  - 2024
SP  - 74
EP  - 83
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a5/
LA  - en
ID  - UFA_2024_16_3_a5
ER  - 
%0 Journal Article
%A V. V. Napalkov (jr.)
%A A. A. Nuyatov
%T To question on embedding of reproducing kernel Hilbert spaces
%J Ufa mathematical journal
%D 2024
%P 74-83
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a5/
%G en
%F UFA_2024_16_3_a5
V. V. Napalkov (jr.); A. A. Nuyatov. To question on embedding of reproducing kernel Hilbert spaces. Ufa mathematical journal, Tome 16 (2024) no. 3, pp. 74-83. http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a5/

[1] A. Berlinet, C. Thomas–Agnan, Reproducing kernel Hilbert spaces in probability and statistics, Kluwer Academic Publishers, New York, 2001 | MR

[2] S. Saitoh, Y. Sawano, Theory of Reproducing Kernel and Application, Developments in Mathematics, 44, Springer, Singapore, 2016, 452 pp. | DOI | MR

[3] V.V. Napalkov (jr.), A.A. Nuyatov, “On a condition for the coincidence of transform spaces for functionals in a Hilbert space”, Tr. Inst. Mat. Mekh. (Ekaterinburg), 28, no. 3, 2022, 142–154 (in Russian) | MR

[4] V.V. Napalkov (jr.), A.A. Nuyatov, “To question on coincidence of Hilbert spaces of square integrable in measure functions”, Tr. MFTI, 15:3 (2023), 39–49 (in Russian)

[5] N.D. Ylvisaker, “On linear estimation for regression problems on time series”, Ann. Math. Stat., 33 (1962), 1077–1084 | DOI | MR | Zbl

[6] M.F. Driscoll, “The reproducing kernel Hilbert space structure of the sample paths of a Gaussian process”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 26 (1973), 309–316 | DOI | MR | Zbl

[7] V.V. Napalkov, V.V. Napalkov (jr.), “On isomorphism of reproducing kernel Hilbert spaces”, Dokl. Math., 95:3 (2017), 270–272 | DOI | DOI | MR | MR | Zbl

[8] T.P. Lukashenko, “Properties of expansion systems similar to orthogonal ones”, Izv. Math., 62:5 (1998), 1035–1054 | DOI | DOI | MR | Zbl

[9] V.V. Napalkov (jr.), “On orthosimilar systems in a space of analytic functions and the problem of the dual space description”, Ufim. Mat. Zh., 3:1 (2011), 31–42 (in Russian) | MR | Zbl

[10] L.V. Kantorovich, G.P. Akilov, Functional Analysis, Pergamon Press, Oxford etc., 1982 | MR | MR | Zbl

[11] V.V. Napalkov (jr.), R.S. Yulmukhametov, “Weighted Fourier — Laplace transforms of analytic functionals on the disk”, Russ. Acad. Sci., Sb., Math., 77:2 (1994), 385–390 | MR | Zbl