Mots-clés : convex domain, interpolation
@article{UFA_2024_16_3_a3,
author = {A. S. Krivosheev and O. A. Krivosheeva},
title = {Interpolation and fundamental principle},
journal = {Ufa mathematical journal},
pages = {54--64},
year = {2024},
volume = {16},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a3/}
}
A. S. Krivosheev; O. A. Krivosheeva. Interpolation and fundamental principle. Ufa mathematical journal, Tome 16 (2024) no. 3, pp. 54-64. http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a3/
[1] V.V. Napalkov, Convolution equations in multidimensional spaces, Nauka, M., 1982 (in Russian)
[2] A.F. Leont'ev, Entire functions. Exponential series, Nauka, M., 1983 (in Russian) | MR
[3] A.A. Gol'dberg, B.Ya. Levin, I.V. Ostrovkij, “Entire and meromorphic functions”, Complex Analysis I, Encycl. Math. Sci., 85, 1995, 1–193 | MR
[4] A.S. Krivosheev, “The fundamental principle for invariant subspaces in convex domains”, Izv. Math., 68:2 (2004), 291–353 | DOI | DOI | MR | Zbl
[5] A.F. Leont'ev, Exponential series, Nauka, M., 1976 (in Russian) | MR
[6] B.Ya. Levin, Distribution of zeros of entire functions, American Mathematical Society, Providence, R.I., 1964 | MR | Zbl
[7] A.S. Krivosheev, O.A. Krivosheeva, “Convergence of series of exponential monomials”, Ufa Math. J., 14:4 (2022), 56–68 | DOI | MR | Zbl
[8] O.A. Krivosheeva, A.S. Krivosheev, “Representation of functions in an invariant subspace with almost real spectrum”, St. Petersbg. Math. J., 29:4 (2018), 603–641 | DOI | MR | Zbl
[9] A.P. Robertson, W. Robertson, Topological vector spaces, Cambridge University Press, Cambridge, 1964 | MR | MR | Zbl
[10] O.A. Krivosheyeva, “The convergence domain for series of exponential monomials”, Ufim. Mat. Zh., 3:2 (2011), 43–56 (in Russian) | Zbl
[11] A. Grothendieck, “Sur les espaces (F) et (DF)”, Summa Brasil. Math., 3 (1954), 57–121 (in French) | MR | Zbl