Interpolation sets in spaces of functions of finite order in half–plane
Ufa mathematical journal, Tome 16 (2024) no. 3, pp. 40-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider free interpolation problems, the study of which was initiated by A.F. Leontiev. We obtain new criterions for the interpolation property of sets in the space of analytic in the upper half–plane functions of finite order. We provide examples of interpolation sets in the space of analytic in the upper half–plane functions of finite order. These examples are similar to interpolation sets in the space of analytic and bounded in the upper half–plane functions. In particular, we provide examples of sets satisfying the Newman condition and uniform Frostman condition.
Keywords: free interpolation, half–plane, finite order
Mots-clés : interpolation set.
@article{UFA_2024_16_3_a2,
     author = {M. V. Kabanko and K. G. Malyutin},
     title = {Interpolation sets in spaces of functions of finite order in half{\textendash}plane},
     journal = {Ufa mathematical journal},
     pages = {40--53},
     year = {2024},
     volume = {16},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a2/}
}
TY  - JOUR
AU  - M. V. Kabanko
AU  - K. G. Malyutin
TI  - Interpolation sets in spaces of functions of finite order in half–plane
JO  - Ufa mathematical journal
PY  - 2024
SP  - 40
EP  - 53
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a2/
LA  - en
ID  - UFA_2024_16_3_a2
ER  - 
%0 Journal Article
%A M. V. Kabanko
%A K. G. Malyutin
%T Interpolation sets in spaces of functions of finite order in half–plane
%J Ufa mathematical journal
%D 2024
%P 40-53
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a2/
%G en
%F UFA_2024_16_3_a2
M. V. Kabanko; K. G. Malyutin. Interpolation sets in spaces of functions of finite order in half–plane. Ufa mathematical journal, Tome 16 (2024) no. 3, pp. 40-53. http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a2/

[1] A.F. Grishin, “Continuity and asymptotic continuity of subharmonic functions. I”, Mat. Fiz. Anal. Geom., 1:2 (1994), 193–215 (Russian. English summary) | MR | Zbl

[2] A.F. Leontiev, “On interpolation in class of entire functions of finite order”, Dokl. Akad. Nauk SSSR, 61 (1948), 785–787 (in Russian) | Zbl

[3] A.F. Leontiev, “On interpolation in class of entire functions of finite order and normal type”, Dokl. Akad. Nauk SSSR, 66 (1949), 153–156 (in Russian) | Zbl

[4] A.F. Leontiev, “To question on interpolation in class of entire functions of finite order”, Mat. Sb., 41:83 (1957), 81–96 (in Russian) | Zbl

[5] K.G. Malyutin, “The problem of multiple interpolation in the half-plane in the class of analytic functions of finite order and normal type”, Russ. Acad. Sci., Sb., Math., 78:1 (1994), 253–266 | MR | MR | Zbl

[6] K.G. Malyutin, “Modified Johnson method for solving multiple interpolation problem in half–plane”, Studies on mathematical analysis, Vladikavkaz Scientific Center, Vladikavkaz, 2009, 143–164 (in Russian)

[7] O.A. Bozhenko, K.G. Malyutin, “Problem of multiple interpolation in class of analytical functions of zero order in half–plane”, Ufa Math. J., 6:1 (2014), 18–28 | DOI | MR

[8] K.G. Malyutin, A.L. Gusev, “The interpolation problem in the spaces of analytical functions of finite order in the half-plane”, Probl. Anal. Issues Anal., Spec. Iss., 7(25) (2018), 113–123 | MR | Zbl

[9] K.G. Malyutin, M.V. Kabanko, “Multiple Interpolation by the Functions of Finite Order in the Half-plane”, Lobachevskii J. Math., 41:11 (2020), 2211–2222 | DOI | MR | Zbl

[10] S.A. Vinogradov, V.P. Khavin, “Free interpolation in $H^\infty$ and in some other function classes”, J. Sov. Math., 9 (1978), 137–171 | DOI | Zbl | Zbl

[11] K.G. Malyutin, O.A. Bozhenko, “Weakly regular sets”, Istanb. Univ., Sci. Fac., J. Math. Phys. Astron., 4 (2013), 1–8 | MR | Zbl

[12] K.G. Malyutin, “Sets of regular growth of functions in the half–plane. I”, Izv. Math., 59:4 (1995), 785–814 | DOI | MR | Zbl

[13] K.G. Malyutin, “Sets of regular growth of functions in a half–plane. II”, Izv. Math., 59:5 (1995), 983–1006 | DOI | MR | Zbl

[14] A.V. Bratishchev, Yu.F. Korobejnik, “Multiple interpolation problem in space of entire functions of given proximate order”, Izv. Akad. Nauk SSSR, Ser. Mat., 40:5 (1976), 1102–1127 (in Russian) | MR