On level sets of norm of generalized resolvent of operators pencils
Ufa mathematical journal, Tome 16 (2024) no. 3, pp. 125-133
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that the generalized resolvent operator defined in a Hilbert space cannot remain constant on any open subset of the resolvent set. Under certain conditions we also prove the same result for a complex uniformly convex Banach space. These results extend the known ones.
Keywords:
$\varepsilon$–pseudospectrum, $\varepsilon$–pseudospectrum of operators pencils, generalized spectrum approximation, operator pencil.
@article{UFA_2024_16_3_a10,
author = {M. A. Mansouri and A. Khellaf and H. Guebbai},
title = {On level sets of norm of generalized resolvent of operators pencils},
journal = {Ufa mathematical journal},
pages = {125--133},
publisher = {mathdoc},
volume = {16},
number = {3},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a10/}
}
TY - JOUR AU - M. A. Mansouri AU - A. Khellaf AU - H. Guebbai TI - On level sets of norm of generalized resolvent of operators pencils JO - Ufa mathematical journal PY - 2024 SP - 125 EP - 133 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a10/ LA - en ID - UFA_2024_16_3_a10 ER -
M. A. Mansouri; A. Khellaf; H. Guebbai. On level sets of norm of generalized resolvent of operators pencils. Ufa mathematical journal, Tome 16 (2024) no. 3, pp. 125-133. http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a10/