On level sets of norm of generalized resolvent of operators pencils
Ufa mathematical journal, Tome 16 (2024) no. 3, pp. 125-133 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that the generalized resolvent operator defined in a Hilbert space cannot remain constant on any open subset of the resolvent set. Under certain conditions we also prove the same result for a complex uniformly convex Banach space. These results extend the known ones.
Keywords: $\varepsilon$–pseudospectrum, $\varepsilon$–pseudospectrum of operators pencils, generalized spectrum approximation, operator pencil.
@article{UFA_2024_16_3_a10,
     author = {M. A. Mansouri and A. Khellaf and H. Guebbai},
     title = {On level sets of norm of generalized resolvent of operators pencils},
     journal = {Ufa mathematical journal},
     pages = {125--133},
     year = {2024},
     volume = {16},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a10/}
}
TY  - JOUR
AU  - M. A. Mansouri
AU  - A. Khellaf
AU  - H. Guebbai
TI  - On level sets of norm of generalized resolvent of operators pencils
JO  - Ufa mathematical journal
PY  - 2024
SP  - 125
EP  - 133
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a10/
LA  - en
ID  - UFA_2024_16_3_a10
ER  - 
%0 Journal Article
%A M. A. Mansouri
%A A. Khellaf
%A H. Guebbai
%T On level sets of norm of generalized resolvent of operators pencils
%J Ufa mathematical journal
%D 2024
%P 125-133
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a10/
%G en
%F UFA_2024_16_3_a10
M. A. Mansouri; A. Khellaf; H. Guebbai. On level sets of norm of generalized resolvent of operators pencils. Ufa mathematical journal, Tome 16 (2024) no. 3, pp. 125-133. http://geodesic.mathdoc.fr/item/UFA_2024_16_3_a10/

[1] A. Ammar, H. Daoud, A. Jeribi, “Pseudospectra and essential pseudospectra of multivalued linear relations”, Mediterr. J. Math., 12:4 (2015), 1377–1395 | DOI | MR | Zbl

[2] A. Ammar, A. Jeribi, K. Mahfoudhi, “The condition pseudospectrum subset and related results”, J. Pseudo–Differ. Oper. Appl., 11:1 (2020), 491–504 | DOI | MR | Zbl

[3] S. Bögli, P. Siegl, “Remarks on the convergence of pseudospectra”, Integral Equations Oper. Theory, 80:3 (2014), 303–321 | DOI | MR | Zbl

[4] E. B. Davies, Linear operators and their spectra, Cambridge University Press, Cambridge, England, 2007 | MR | Zbl

[5] E. B. Davies, E. Shargorodsky, “Level sets of the resolvent norm of a linear operator revisited”, Mathematika., 62:1 (2016), 243–265 | DOI | MR | Zbl

[6] J. Globevnik, “Norm–constant analytic functions and equivalent norms”, Ill. J. Math., 20:3 (1976), 503–506 | MR | Zbl

[7] J. Globevnik, I. Vidav, “On operator–valued analytic functions with constant norm”, J. Funct. Anal., 15:4 (1974), 394–403 | DOI | MR | Zbl

[8] H. Guebbai, “Generalized spectrum approximation and numerical computation of eigenvalues for Schrödinger's operators”, Lobachevskii J. Math., 34:1 (2013), 45–60 | DOI | MR | Zbl

[9] A. Khellaf, S. Benarab, H. Guebbai, W. Merchela, “A class of strongly stable approximation for unbounded operators”, Vestn. Tambov. Gos. Tekh. Univ., 24:126 (2019), 218–234

[10] Russian Math. (Iz. VUZ), 65:2 (2021), 65–68 | DOI | DOI | MR | Zbl

[11] A. Khellaf. H. Guebbai, S. Lemita, A. M. Aissaoui, “On the pseudo-spectrum of operator pencils”, Asian-Eur. J. Math., 13:5 (2020), 2050100 | DOI | MR | Zbl

[12] S. H. Kulkarni, “Spectrum and related sets: a survey”, J. Anal., 29:2 (2021), 493–517 | DOI | MR | Zbl

[13] A. S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils, American Mathematical Society, Providence, RI, 1988 | MR | Zbl

[14] E. Shargorodsky, “On the level sets of the resolvent norm of a linear operator”, Bull. Lond. Math. Soc., 40:3 (2008), 493–504 | DOI | MR | Zbl

[15] E. Shargorodsky, “On the definition of pseudospectra”, Bull. Lond. Math. Soc., 41:3 (2009), 524–534 | DOI | MR | Zbl

[16] Russ. Math. Surv., 49:4 (1994), 45–74 | DOI | MR | Zbl

[17] L. N. Trefethen, M. Embree, Spectra and Pseudospectra. The Behavior of Nonnormal Matrices and Operators, Princeton University Press, Princeton, NJ, 2005 | MR | Zbl